These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 37443728)

  • 1. Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation.
    Gupta S; Dutta S; Hui SP
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of HDACs and KATs in high and low regeneration capacity neurons during spinal cord regeneration.
    Chen J; Laramore C; Shifman MI
    Exp Neurol; 2016 Jun; 280():50-9. PubMed ID: 27059134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat.
    Diaz Quiroz JF; Tsai E; Coyle M; Sehm T; Echeverri K
    Dis Model Mech; 2014 Jun; 7(6):601-11. PubMed ID: 24719025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages.
    Lee-Liu D; Moreno M; Almonacid LI; Tapia VS; Muñoz R; von Marées J; Gaete M; Melo F; Larraín J
    Neural Dev; 2014 May; 9():12. PubMed ID: 24885550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability.
    Lange S; Gögel S; Leung KY; Vernay B; Nicholas AP; Causey CP; Thompson PR; Greene ND; Ferretti P
    Dev Biol; 2011 Jul; 355(2):205-14. PubMed ID: 21539830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates.
    Lee-Liu D; Edwards-Faret G; Tapia VS; Larraín J
    Genesis; 2013 Aug; 51(8):529-44. PubMed ID: 23760835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic Cross-Talk Between Sirt1 and Dnmt1 Promotes Axonal Regeneration After Spinal Cord Injury in Zebrafish.
    Gupta S; Hui SP
    Mol Neurobiol; 2024 Aug; ():. PubMed ID: 39110393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal Cord Transection In Xenopus laevis Tadpoles.
    Slater PG; Larraín J
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 34958088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord regeneration - the origins of progenitor cells for functional rebuilding.
    Walker SE; Echeverri K
    Curr Opin Genet Dev; 2022 Aug; 75():101917. PubMed ID: 35623298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The asparaginyl endopeptidase legumain is essential for functional recovery after spinal cord injury in adult zebrafish.
    Ma L; Shen YQ; Khatri HP; Schachner M
    PLoS One; 2014; 9(4):e95098. PubMed ID: 24747977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells.
    Gaete M; Muñoz R; Sánchez N; Tampe R; Moreno M; Contreras EG; Lee-Liu D; Larraín J
    Neural Dev; 2012 Apr; 7():13. PubMed ID: 22537391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Lampreys as an animal model in regeneration studies after spinal cord injury].
    Rodicio MC; Barreiro-Iglesias A
    Rev Neurol; 2012 Aug; 55(3):157-66. PubMed ID: 22825976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish.
    Hui SP; Sengupta D; Lee SG; Sen T; Kundu S; Mathavan S; Ghosh S
    PLoS One; 2014; 9(1):e84212. PubMed ID: 24465396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of regenerative processes in neonatal spinal cord injury in the opossum (Monodelphis domestica): A transcriptomic study.
    Wheaton BJ; Sena J; Sundararajan A; Umale P; Schilkey F; Miller RD
    J Comp Neurol; 2021 Apr; 529(5):969-986. PubMed ID: 32710567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer.
    Cigliola V; Shoffner A; Lee N; Ou J; Gonzalez TJ; Hoque J; Becker CJ; Han Y; Shen G; Faw TD; Abd-El-Barr MM; Varghese S; Asokan A; Poss KD
    Nat Commun; 2023 Aug; 14(1):4857. PubMed ID: 37567873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.