These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37443958)

  • 1. The Reproductive Capacities of the Calanoid Copepods
    Behbehani M; Uddin S; Habibi N; Al-Sarawi HA; Al-Enezi Y
    Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiny but Subitaneous Eggs: Egg Morphology and Hatching in
    Nakajima R; Yoshida T; Sakaguchi SO; Othman BHR; Toda T
    Zool Stud; 2019; 58():e5. PubMed ID: 31966306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of marine copepods to a changing tropical environment: winners, losers and implications.
    Chew LL; Chong VC
    PeerJ; 2016; 4():e2052. PubMed ID: 27257540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projected marine climate change: effects on copepod oxidative status and reproduction.
    Vehmaa A; Hogfors H; Gorokhova E; Brutemark A; Holmborn T; Engström-Öst J
    Ecol Evol; 2013 Nov; 3(13):4548-57. PubMed ID: 24340194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.
    Garzke J; Hansen T; Ismar SM; Sommer U
    PLoS One; 2016; 11(5):e0155952. PubMed ID: 27224476
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Uddin S; Behbehani M; Al-Ghadban A; Sajid S; Al-Zekri W; Ali M; Al-Jutaili S; Al-Musallam L; Vinod V; Al-Murad M; Alam F
    Mar Pollut Bull; 2018 Aug; 133():861-864. PubMed ID: 30041387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.
    Byrne M; Przeslawski R
    Integr Comp Biol; 2013 Oct; 53(4):582-96. PubMed ID: 23697893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary Observations of the Effect of Temperature and Food Concentration on the Egg Production Rate and Hatching Success of
    El-Sherbiny MM; Al-Aidaroos A
    Zool Stud; 2021; 60():e58. PubMed ID: 35665084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parental exposure to elevated pCO
    Cripps G; Lindeque P; Flynn K
    J Plankton Res; 2014 Sep; 36(5):1165-1174. PubMed ID: 25221371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest.
    Jørgensen TS; Jepsen PM; Petersen HCB; Friis DS; Hansen BW
    BMC Ecol; 2019 Jan; 19(1):1. PubMed ID: 30646885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg.
    Foo SA; Byrne M
    Mar Environ Res; 2017 Jul; 128():12-24. PubMed ID: 28237403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.
    Harney E; Artigaud S; Le Souchu P; Miner P; Corporeau C; Essid H; Pichereau V; Nunes FLD
    J Proteomics; 2016 Mar; 135():151-161. PubMed ID: 26657130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copepod reproductive effort and oxidative status as responses to warming in the marine environment.
    von Weissenberg E; Jansson A; Vuori KA; Engström-Öst J
    Ecol Evol; 2022 Feb; 12(2):e8594. PubMed ID: 35222966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental temperature, more than long-term evolution, defines thermal tolerance in an estuarine copepod.
    Ashlock L; Darwin C; Crooker J; deMayo J; Dam HG; Pespeni M
    Ecol Evol; 2024 Feb; 14(2):e10995. PubMed ID: 38380068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous warming and acidification limit population fitness and reveal phenotype costs for a marine copepod.
    deMayo JA; Brennan RS; Pespeni MH; Finiguerra M; Norton L; Park G; Baumann H; Dam HG
    Proc Biol Sci; 2023 Sep; 290(2006):20231033. PubMed ID: 37670582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domestication as a Novel Approach for Improving the Cultivation of Calanoid Copepods: A Case Study with Parvocalanus crassirostris.
    Alajmi F; Zeng C; Jerry DR
    PLoS One; 2015; 10(7):e0133269. PubMed ID: 26186526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.