BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 37444501)

  • 41. The role of metabolic reprogramming in kidney cancer.
    Chen Z; Zhang X
    Front Oncol; 2024; 14():1402351. PubMed ID: 38884097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors.
    Naik A; Decock J
    Front Oncol; 2020; 10():598626. PubMed ID: 33324565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma.
    Pang Y; Lu T; Xu-Monette ZY; Young KH
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy.
    Sun NY; Yang MH
    Front Oncol; 2020; 10():792. PubMed ID: 32509584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors.
    Patra S; Elahi N; Armorer A; Arunachalam S; Omala J; Hamid I; Ashton AW; Joyce D; Jiao X; Pestell RG
    Front Oncol; 2021; 11():700629. PubMed ID: 34631530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. COIMMR: a computational framework to reveal the contribution of herbal ingredients against human cancer via immune microenvironment and metabolic reprogramming.
    Tian S; Li Y; Xu J; Zhang L; Zhang J; Lu J; Xu X; Luan X; Zhao J; Zhang W
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37816138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S; Donti TR; Agnihotri N; Mehta K
    Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy.
    Fu Y; Liu S; Yin S; Niu W; Xiong W; Tan M; Li G; Zhou M
    Oncotarget; 2017 Aug; 8(34):57813-57825. PubMed ID: 28915713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Lipid Metabolic Reprogramming and Metabolic Stress in Liver Cancer].
    Xu Z; Yuan KF
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):561-565. PubMed ID: 34323031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aldose reductase and cancer metabolism: The master regulator in the limelight.
    Syamprasad NP; Jain S; Rajdev B; Prasad N; Kallipalli R; Naidu VGM
    Biochem Pharmacol; 2023 May; 211():115528. PubMed ID: 37011733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses.
    Liu Y; Zhou Q; Song S; Tang S
    Trends Endocrinol Metab; 2021 Oct; 32(10):762-775. PubMed ID: 34340886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tumor metabolic reprogramming in lung cancer progression.
    Li X; Liu M; Liu H; Chen J
    Oncol Lett; 2022 Aug; 24(2):287. PubMed ID: 35814833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer.
    Delgir S; Bastami M; Ilkhani K; Safi A; Seif F; Alivand MR
    Mutat Res Rev Mutat Res; 2021; 787():108366. PubMed ID: 34083056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic reprogramming in the arsenic carcinogenesis.
    Ruan Y; Fang X; Guo T; Liu Y; Hu Y; Wang X; Hu Y; Gao L; Li Y; Pi J; Xu Y
    Ecotoxicol Environ Saf; 2022 Jan; 229():113098. PubMed ID: 34952379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ERK and JNK pathways in the regulation of metabolic reprogramming.
    Papa S; Choy PM; Bubici C
    Oncogene; 2019 Mar; 38(13):2223-2240. PubMed ID: 30487597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. OBHS Drives Abnormal Glycometabolis Reprogramming via GLUT1 in Breast Cancer.
    Wang K; Li Q; Fan Y; Fang P; Zhou H; Huang J
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer.
    Kansara S; Singh A; Badal AK; Rani R; Baligar P; Garg M; Pandey AK
    Semin Cancer Biol; 2023 Oct; 95():1-12. PubMed ID: 37364663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trends in metabolic signaling pathways of tumor drug resistance: A scientometric analysis.
    Jiang R; Cao M; Mei S; Guo S; Zhang W; Ji N; Zhao Z
    Front Oncol; 2022; 12():981406. PubMed ID: 36387132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer.
    Avolio R; Matassa DS; Criscuolo D; Landriscina M; Esposito F
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31947673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer.
    Feng WW; Kurokawa M
    Cancer Drug Resist; 2020; 3(1):1-17. PubMed ID: 32226926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.