BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37444537)

  • 21. Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma.
    Castilho-Fernandes A; Lopes TG; Primo FL; Pinto MR; Tedesco AC
    Photodiagnosis Photodyn Ther; 2017 Sep; 19():221-228. PubMed ID: 28599959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating photodynamic therapy for the treatment of glioblastoma using Monte Carlo radiative transport.
    Finlayson L; McMillan L; Suveges S; Steele D; Eftimie R; Trucu D; Brown CTA; Eadie E; Hossain-Ibrahim K; Wood K
    J Biomed Opt; 2024 Feb; 29(2):025001. PubMed ID: 38322729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers.
    Lilge L; Wilson BC
    J Clin Laser Med Surg; 1998 Apr; 16(2):81-91. PubMed ID: 9663099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The enhanced anti-cancer effect of hexenyl ester of 5-aminolaevulinic acid photodynamic therapy in adriamycin-resistant compared to non-resistant breast cancer cells.
    Yoon JH; Yoon HE; Kim O; Kim SK; Ahn SG; Kang KW
    Lasers Surg Med; 2012 Jan; 44(1):76-86. PubMed ID: 22246987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy.
    Huang X; Chen T; Mu N; Lam HW; Sun C; Yue L; Cheng Q; Gao C; Yuan Z; Wang R
    Acta Biomater; 2021 Sep; 131():483-492. PubMed ID: 34265471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status.
    Caverzán MD; Beaugé L; Chesta CA; Palacios RE; Ibarra LE
    J Photochem Photobiol B; 2020 Nov; 212():112045. PubMed ID: 33022469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment.
    Briel-Pump A; Beez T; Ebbert L; Remke M; Weinhold S; Sabel MC; Sorg RV
    J Photochem Photobiol B; 2018 Dec; 189():298-305. PubMed ID: 30445362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodynamic effects on Fonsecaea monophora conidia and RAW264.7 in vitro.
    Yi X; Fransisca C; He Y; Liu Y; Lu S; He L; Xi L
    J Photochem Photobiol B; 2017 Nov; 176():112-117. PubMed ID: 28992604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of Photodynamic Therapy for Glioblastoma with the Mitochondria-Targeted Photosensitizer Tetramethylrhodamine Methyl Ester (TMRM).
    Vasilev A; Sofi R; Smith SJ; Rahman R; Teschemacher AG; Kasparov S
    Biomedicines; 2021 Oct; 9(10):. PubMed ID: 34680569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.
    Albert I; Hefti M; Luginbuehl V
    Neurol Res; 2014 Nov; 36(11):1001-10. PubMed ID: 24923209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma.
    Huang X; Chen J; Wu W; Yang W; Zhong B; Qing X; Shao Z
    Acta Biomater; 2020 Jun; 109():229-243. PubMed ID: 32294550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive Oxygen Species Produced by 5-Aminolevulinic Acid Photodynamic Therapy in the Treatment of Cancer.
    Pignatelli P; Umme S; D'Antonio DL; Piattelli A; Curia MC
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells.
    Yu CH; Yu CC
    PLoS One; 2014; 9(1):e87129. PubMed ID: 24475244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodynamic Therapy for Basal Cell Carcinoma: The Clinical Context for Future Research Priorities.
    Collier NJ; Rhodes LE
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33218174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer.
    Xu W; Qian J; Hou G; Wang Y; Wang J; Sun T; Ji L; Suo A; Yao Y
    Acta Biomater; 2019 Jan; 83():400-413. PubMed ID: 30465921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomedicine associated with photodynamic therapy for glioblastoma treatment.
    de Paula LB; Primo FL; Tedesco AC
    Biophys Rev; 2017 Oct; 9(5):761-773. PubMed ID: 28823025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review.
    Casas A
    Cancer Lett; 2020 Oct; 490():165-173. PubMed ID: 32534172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine.
    Alsaab HO; Alghamdi MS; Alotaibi AS; Alzhrani R; Alwuthaynani F; Althobaiti YS; Almalki AH; Sau S; Iyer AK
    Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies.
    Zhao W; Wang L; Zhang M; Liu Z; Wu C; Pan X; Huang Z; Lu C; Quan G
    MedComm (2020); 2024 Jul; 5(7):e603. PubMed ID: 38911063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genotoxic potential of porphyrin type photosensitizers with particular emphasis on 5-aminolevulinic acid: implications for clinical photodynamic therapy.
    Fuchs J; Weber S; Kaufmann R
    Free Radic Biol Med; 2000 Feb; 28(4):537-48. PubMed ID: 10719235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.