These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37444850)

  • 41. Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applications.
    Humayun H; Begum B; Bilal S; Shah AUHA; Röse P
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supercapacitor Performance of Sulfonyldibenzene Derivative-Functionalized Graphene Aerogel.
    Xing R; Gong X; Gao Z; Yang J; Zhang K; Li Y; Ge X; Pan G; Jia L; Xie H; Xiong S
    Langmuir; 2024 Jun; 40(22):11571-11581. PubMed ID: 38779964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of Sandwich-like NiCo
    Li D; Gong Y; Wang M; Pan C
    Nanomicro Lett; 2017; 9(2):16. PubMed ID: 30460313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CNT-rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes.
    Kang SH; Lee GY; Lim J; Kim SO
    ACS Omega; 2021 Aug; 6(30):19578-19585. PubMed ID: 34368544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.
    Ghosh D; Das CK
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced electrochemical performance of MnNi
    Askari MB; Salarizadeh P; Di Bartolomeo A; Şen F
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33946059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultra-long cycle life and binder-free manganese-cobalt oxide supercapacitor electrodes through photonic nanostructuring.
    Gaire M; Subedi B; Adireddy S; Chrisey D
    RSC Adv; 2020 Nov; 10(66):40234-40243. PubMed ID: 35520879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.
    Chen J; Wang Y; Cao J; Liu Y; Zhou Y; Ouyang JH; Jia D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19831-19842. PubMed ID: 28537372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microwave-Assisted Synthesis of ZnO-rGO Core-Shell Nanorod Hybrids with Photo- and Electro-Catalytic Activity.
    Jana A; Gregory DH
    Chemistry; 2020 May; 26(29):6703-6714. PubMed ID: 32154605
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of Free-Standing Flexible rGO/MWCNT Films for Symmetric Supercapacitor Application.
    Kumar A; Kumar N; Sharma Y; Leu J; Tseng TY
    Nanoscale Res Lett; 2019 Aug; 14(1):266. PubMed ID: 31388840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode.
    Askari MB; Salarizadeh P; Seifi M; Rozati SM; Beheshti-Marnani A
    Nanotechnology; 2020 Apr; 31(27):275406. PubMed ID: 32187581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. P-N heterojunction NiO/ZnO nanowire based electrode for asymmetric supercapacitor applications.
    Ahmad R; Sohail A; Yousuf M; Majeed A; Mir A; Aalim M; Shah MA
    Nanotechnology; 2023 Nov; 35(6):. PubMed ID: 37879320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material.
    Xiao W; Zhou W; Feng T; Zhang Y; Liu H; Tian L
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode.
    El Nady J; Shokry A; Khalil M; Ebrahim S; Elshaer AM; Anas M
    Sci Rep; 2022 Mar; 12(1):3611. PubMed ID: 35246573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.
    Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T
    Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z; Shi F; Lu L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1058-64. PubMed ID: 22264121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach.
    Chebrolu VT; Balakrishnan B; Cho I; Bak JS; Kim HJ
    Dalton Trans; 2020 Oct; 49(41):14432-14444. PubMed ID: 33044469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites.
    Feng W; Wang Y; Chen J; Guo L; Ouyang J; Jia D; Zhou Y
    Phys Chem Chem Phys; 2017 Jun; 19(22):14596-14605. PubMed ID: 28537307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.