These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 37444896)

  • 21. Review on the Applications of Biomass-Derived Carbon Materials in Vanadium Redox Flow Batteries.
    Doǧan H; Taş M; Meşeli T; Elden G; Genc G
    ACS Omega; 2023 Sep; 8(38):34310-34327. PubMed ID: 37779984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.
    Park M; Ryu J; Cho J
    Chem Asian J; 2015 Oct; 10(10):2096-110. PubMed ID: 25899910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion.
    Huang J; Dong X; Guo Z; Wang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18322-18333. PubMed ID: 32329546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane development for vanadium redox flow batteries.
    Schwenzer B; Zhang J; Kim S; Li L; Liu J; Yang Z
    ChemSusChem; 2011 Oct; 4(10):1388-406. PubMed ID: 22102992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Cathode-Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries.
    Wang XT; Gu ZY; Li WH; Zhao XX; Guo JZ; Du KD; Luo XX; Wu XL
    Chem Asian J; 2020 Sep; 15(18):2803-2814. PubMed ID: 32543733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrolyte-Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond.
    Zhao L; Li Y; Yu M; Peng Y; Ran F
    Adv Sci (Weinh); 2023 Jun; 10(17):e2300283. PubMed ID: 37085907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anti-Freezing Strategies of Electrolyte and their Application in Electrochemical Energy Devices.
    Liu Y; Li W; Cheng L; Liu Q; Wei J; Huang Y
    Chem Rec; 2022 Oct; 22(10):e202200068. PubMed ID: 35621364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TiO
    Palanisamy G; Oh TH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mini-Review on the Redox Additives in Aqueous Electrolyte for High Performance Supercapacitors.
    Qin W; Zhou N; Wu C; Xie M; Sun H; Guo Y; Pan L
    ACS Omega; 2020 Mar; 5(8):3801-3808. PubMed ID: 32149206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical Doping and O-Functionalization of Carbon-Based Electrode to Improve Vanadium Redox Flow Batteries.
    Liao H; Gao Y; Wang L; Cheng S; Liu D; Du H; Lin L
    ChemSusChem; 2024 May; ():e202400705. PubMed ID: 38818626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review.
    Du Y; Li Y; Xu BB; Liu TX; Liu X; Ma F; Gu X; Lai C
    Small; 2022 Oct; 18(43):e2104640. PubMed ID: 34882951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries.
    Wan F; Niu Z
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16358-16367. PubMed ID: 31050086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrolyte Engineering Enables High Performance Zinc-Ion Batteries.
    Wang Y; Wang Z; Yang F; Liu S; Zhang S; Mao J; Guo Z
    Small; 2022 Oct; 18(43):e2107033. PubMed ID: 35191602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vanadium Redox Flow Battery: Review and Perspective of 3D Electrodes.
    Ye L; Qi S; Cheng T; Jiang Y; Feng Z; Wang M; Liu Y; Dai L; Wang L; He Z
    ACS Nano; 2024 Jul; 18(29):18852-18869. PubMed ID: 38993077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox mediators as charge agents for changing electrochemical reactions.
    Tamirat AG; Guan X; Liu J; Luo J; Xia Y
    Chem Soc Rev; 2020 Oct; 49(20):7454-7478. PubMed ID: 32996520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrolyte-philicity of electrode materials.
    Zhao L; Ran F
    Chem Commun (Camb); 2023 Jun; 59(46):6969-6986. PubMed ID: 37165689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries.
    Tan H; Lin X
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits.
    Chen R
    Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.