These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37444907)
1. The Effect of Process Conditions on Sulfuric Acid Leaching of Manganese Sludge. Safarian J; Eini AS; Pedersen MAE; Haghdani S Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444907 [TBL] [Abstract][Full Text] [Related]
2. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry. Mocellin J; Mercier G; Morel JL; Blais JF; Simonnot MO J Environ Manage; 2015 Aug; 158():48-54. PubMed ID: 25958078 [TBL] [Abstract][Full Text] [Related]
3. Manganese and iron recovery from groundwater treatment sludge by reductive acid leaching and hydroxide precipitation. Ong DC; de Luna MDG; Pingul-Ong SMB; Kan CC J Environ Manage; 2018 Oct; 223():723-730. PubMed ID: 29975900 [TBL] [Abstract][Full Text] [Related]
4. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries. El-Nadi YA; Daoud JA; Aly HF J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
6. Studies of Selective Recovery of Zinc and Manganese from Alkaline Batteries Scrap by Leaching and Precipitation. Skrzekut T; Piotrowicz A; Noga P; Wędrychowicz M; Bydałek AW Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683264 [TBL] [Abstract][Full Text] [Related]
7. Release characteristics of heavy metals from electrolytic manganese residue under varying environmental factors. Fosua BA; Xie H; Xiao X; Anaman R; Wang X; Guo Z; Peng C Environ Monit Assess; 2023 Mar; 195(4):498. PubMed ID: 36947342 [TBL] [Abstract][Full Text] [Related]
8. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. Sayilgan E; Kukrer T; Yigit NO; Civelekoglu G; Kitis M J Hazard Mater; 2010 Jan; 173(1-3):137-43. PubMed ID: 19744786 [TBL] [Abstract][Full Text] [Related]
9. Microwave-enhanced reduction of manganese from a low-grade pyrolusite ore using pyrite: process optimization and kinetic studies. Lin S; Gao L; Yang Y; Liu R; Chen J; Guo S; Omran M; Chen G Environ Sci Pollut Res Int; 2022 Aug; 29(39):58915-58926. PubMed ID: 35368238 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting. Zhou L; Peng T; Sun H; Wang S RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258 [TBL] [Abstract][Full Text] [Related]
11. Microwave-assisted recovery of lead from electrolytic manganese anode sludge using tartaric acid and NaOH. Zhu R; Long H; Wang Y; Xie H; Yin S; Li S Environ Technol; 2023 Apr; 44(9):1287-1301. PubMed ID: 34709984 [TBL] [Abstract][Full Text] [Related]
12. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Buzatu T; Popescu G; Birloaga I; Săceanu S Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875 [TBL] [Abstract][Full Text] [Related]
13. Processing of ferromanganese fumes into high-purity manganese sulphate monohydrate. Lee YH; Kang JH; Seo S; Tran T; Kim MJ J Air Waste Manag Assoc; 2020 Sep; 70(9):944-955. PubMed ID: 32579435 [TBL] [Abstract][Full Text] [Related]
14. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues. Li M; Zheng S; Liu B; Du H; Dreisinger DB; Tafaghodi L; Zhang Y Waste Manag; 2017 Jul; 65():128-138. PubMed ID: 28392119 [TBL] [Abstract][Full Text] [Related]
15. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Biswas RK; Karmakar AK; Kumar SL Waste Manag; 2016 May; 51():174-181. PubMed ID: 26564257 [TBL] [Abstract][Full Text] [Related]
16. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Tanong K; Coudert L; Mercier G; Blais JF J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877 [TBL] [Abstract][Full Text] [Related]
17. Recovery of manganese and zinc from waste Zn-C cell powder: Characterization and leaching. Biswas RK; Karmakar AK; Kumar SL; Hossain MN Waste Manag; 2015 Dec; 46():529-35. PubMed ID: 26387051 [TBL] [Abstract][Full Text] [Related]
18. Iron recovery from the coarse fraction of basic oxygen furnace sludge. Part I: optimization of acid leaching conditions. Maia LC; Dos Santos GR; Gurgel LVA; de Freitas Carvalho C Environ Sci Pollut Res Int; 2020 Nov; 27(32):40135-40147. PubMed ID: 32661969 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag. Chen L; Xu J; Yu X; Tian L; Wang R; Xu Z Front Chem; 2021; 9():574722. PubMed ID: 33738275 [TBL] [Abstract][Full Text] [Related]
20. Resource utilization of hazardous solid waste blast furnace dust: Efficient wet desulfurization and metal recovery. Yang X; Xie B; Wang F; Ning P; Li K; Jia L; Feng J; Xia F Chemosphere; 2023 Feb; 314():137592. PubMed ID: 36566794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]