These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37445041)

  • 1. Evolution and Influencing Mechanisms of the Yili Loess Mechanical Properties under Combined Wetting-Drying and Freeze-Thaw Cycling.
    Zhang Y; Zhang Z; Hu W; Zhang Y
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Changes to Triaxial Shear Strength Parameters and Microstructure of Yili Loess with Drying-Wetting Cycles.
    Hao R; Zhang Z; Guo Z; Huang X; Lv Q; Wang J; Liu T
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength deterioration mechanism of bentonite modified loess after wetting-drying cycles.
    Niu ZL; Xu J; Li YF; Wang ZF; Wang B
    Sci Rep; 2022 Feb; 12(1):3130. PubMed ID: 35210491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and quantitative analysis of microstructure parameters between original loess and remoulded loess under different wetting-drying cycles.
    Ni WK; Yuan KZ; Lü XF; Yuan ZH
    Sci Rep; 2020 Mar; 10(1):5547. PubMed ID: 32218489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing of mechanical property and bearing capacity of strongly chlorine saline soil under freeze-thaw cycles.
    Ding S; Li S; Kong S; Li Q; Yang T; Nie Z; Zhao G
    Sci Rep; 2024 Mar; 14(1):6203. PubMed ID: 38485713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes.
    Sun X; Miao L; Chen R; Wang H; Xia J
    J Environ Manage; 2022 Jan; 301():113883. PubMed ID: 34601348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Freeze-Thaw Cycles on the Shear Strength of Root-Soil Composite.
    Liu Q; Huang J; Zhang Z; Liu G; Jiang Q; Liu L; Khan I
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and Mechanical Properties of Expanded Polystyrene (EPS) Particle Lightweight Soil under Freeze-Thaw Cycles.
    Mei L; Gu H; He J; Cheng T
    ACS Omega; 2023 Aug; 8(34):31365-31372. PubMed ID: 37663457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay.
    Lian B; Wang X; Liu K; Hu S; Feng X
    Sci Rep; 2021 Sep; 11(1):17556. PubMed ID: 34475420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation on characteristics of strength recovery and pore structure of Jilin ball clay under freeze-thaw cycles.
    Gao Y; Hao D; Liu X; Chen K; Chen R; Guo R
    Sci Rep; 2024 Jul; 14(1):16659. PubMed ID: 39030232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of repeated freeze-thaw cycles on mechanical properties of clay.
    Jiang H; Han H; Liu X; Wang E; Fu Q; Luo J
    Heliyon; 2024 Mar; 10(5):e27261. PubMed ID: 38468927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Freeze-Thaw Cycles on Triaxial Strength Property Damage to Cement Improved Aeolian Sand (CIAS).
    Li J; Wang F; Yi F; Wu F; Liu J; Lin Z
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of conglomeration gradation on loess shear strength with different water content.
    Kong D; Wan R; Zhao C; Dai J; Dong T; Ni W; Gao J; Wang T
    Sci Prog; 2021; 104(2):368504211010581. PubMed ID: 33881942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties and Constitutive Model of the Cement-Improved Loess under Freeze-Thaw Conditions.
    Niu Y; Hou L; Qin Z; Wang X; Zhang Y; Shao W; Jiang G; Guo X; Zhang J
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure of unsaturated loess and its influence on strength characteristics.
    Wei YZ; Yao ZH; Chong XL; Zhang JH; Zhang J
    Sci Rep; 2022 Jan; 12(1):1502. PubMed ID: 35087133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation and correlation between water retention capacity and gas permeability of compacted loess overburden during wetting-drying cycles.
    Kong D; Wu T; Xu H; Jiang P; Zhou A; Lv Y
    Environ Res; 2024 Jul; 252(Pt 2):118895. PubMed ID: 38604483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on shear strength of saturated remolded loess.
    Lai J; Liu Y; Xiang Y; Wang W; Xu J; Cao B; Zhao D; Wei W; Bao H; Yan C; Lan H
    PLoS One; 2022; 17(7):e0271266. PubMed ID: 35834541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability characteristics and structural evolution of compacted loess under different dry densities and wetting-drying cycles.
    Yuan KZ; Ni WK; Lü XF; Wang XJ
    PLoS One; 2021; 16(6):e0253508. PubMed ID: 34181695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence mechanism of structure on shear mechanical deformation characteristics of loess-steel interface.
    Wei YZ; Yao ZH; Chong XL; Zhang JH; Zhang J
    PLoS One; 2022; 17(2):e0263676. PubMed ID: 35130325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Freeze-Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess.
    Wang W; Cao G; Li Y; Zhou Y; Lu T; Zheng B; Geng W
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.