BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 37445667)

  • 1. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.
    Saldanha J; Rageul J; Patel JA; Kim H
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replisome dysfunction upon inducible TIMELESS degradation synergizes with ATR inhibition to trigger replication catastrophe.
    Patel JA; Zezelic C; Rageul J; Saldanha J; Khan A; Kim H
    Nucleic Acids Res; 2023 Jul; 51(12):6246-6263. PubMed ID: 37144518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extending ATR-CHK1 circuitry: the replication stress response and beyond.
    Simoneau A; Zou L
    Curr Opin Genet Dev; 2021 Dec; 71():92-98. PubMed ID: 34329853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dormant origin signaling during unperturbed replication.
    Moiseeva TN; Bakkenist CJ
    DNA Repair (Amst); 2019 Sep; 81():102655. PubMed ID: 31311769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Claspin - checkpoint adaptor and DNA replication factor.
    Smits VAJ; Cabrera E; Freire R; Gillespie DA
    FEBS J; 2019 Feb; 286(3):441-455. PubMed ID: 29931808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe.
    Ashley AK; Shrivastav M; Nie J; Amerin C; Troksa K; Glanzer JG; Liu S; Opiyo SO; Dimitrova DD; Le P; Sishc B; Bailey SM; Oakley GG; Nickoloff JA
    DNA Repair (Amst); 2014 Sep; 21():131-9. PubMed ID: 24819595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATR-CHK1 signaling by ubiquitination of CLASPIN.
    Zhu X; Zheng XY; Gong P; Xu X
    Biochem Soc Trans; 2022 Oct; 50(5):1471-1480. PubMed ID: 36196914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Src family kinases maintain the balance between replication stress and the replication checkpoint.
    Miura T; Fukumoto Y; Morii M; Honda T; Yamaguchi N; Nakayama Y; Yamaguchi N
    Cell Biol Int; 2016 Jan; 40(1):16-26. PubMed ID: 26194897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR/Mec1: coordinating fork stability and repair.
    Friedel AM; Pike BL; Gasser SM
    Curr Opin Cell Biol; 2009 Apr; 21(2):237-44. PubMed ID: 19230642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint Pathway.
    Yazinski SA; Zou L
    Annu Rev Genet; 2016 Nov; 50():155-173. PubMed ID: 27617969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging strategies for cancer therapy by ATR inhibitors.
    Yano K; Shiotani B
    Cancer Sci; 2023 Jul; 114(7):2709-2721. PubMed ID: 37189251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATR kinase regulates its attenuation via PPM1D phosphatase recruitment to chromatin during recovery from DNA replication stress signalling.
    Bhattacharya D; Hiregange D; Rao BJ
    J Biosci; 2018 Mar; 43(1):25-47. PubMed ID: 29485113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of intra-S checkpoint protein contributions to DNA replication fork protection and genomic stability in normal human fibroblasts.
    Smith-Roe SL; Patel SS; Zhou Y; Simpson DA; Rao S; Ibrahim JG; Cordeiro-Stone M; Kaufmann WK
    Cell Cycle; 2013 Jan; 12(2):332-45. PubMed ID: 23255133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATR phosphorylates SMARCAL1 to prevent replication fork collapse.
    Couch FB; Bansbach CE; Driscoll R; Luzwick JW; Glick GG; Bétous R; Carroll CM; Jung SY; Qin J; Cimprich KA; Cortez D
    Genes Dev; 2013 Jul; 27(14):1610-23. PubMed ID: 23873943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting replicative stress in gynecological cancers as a therapeutic strategy.
    Ngoi NY; Sundararajan V; Tan DS
    Int J Gynecol Cancer; 2020 Aug; 30(8):1224-1238. PubMed ID: 32571890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic treatment with ATR and CHK1 inhibitors does not substantially increase the mutational burden of human cells.
    Casimir L; Zimmer S; Racine-Brassard F; Goudreau F; Jacques PÉ; Maréchal A
    Mutat Res; 2023; 827():111834. PubMed ID: 37531716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATR Protects the Genome against R Loops through a MUS81-Triggered Feedback Loop.
    Matos DA; Zhang JM; Ouyang J; Nguyen HD; Genois MM; Zou L
    Mol Cell; 2020 Feb; 77(3):514-527.e4. PubMed ID: 31708417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of SMG7 in activation of the ATR-CHK1 axis in response to genotoxic stress.
    Ho K; Luo H; Zhu W; Tang Y
    Sci Rep; 2021 Apr; 11(1):7502. PubMed ID: 33820915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling from Mus81-Eme2-Dependent DNA Damage Elicited by Chk1 Deficiency Modulates Replication Fork Speed and Origin Usage.
    Técher H; Koundrioukoff S; Carignon S; Wilhelm T; Millot GA; Lopez BS; Brison O; Debatisse M
    Cell Rep; 2016 Feb; 14(5):1114-1127. PubMed ID: 26804904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.