These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 37445681)

  • 1. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses.
    Ramos-Zúñiga J; Bruna N; Pérez-Donoso JM
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-based nanoparticles against microbial infections.
    Li X; Cong Y; Ovais M; Cardoso MB; Hameed S; Chen R; Chen M; Wang L
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(4):e1888. PubMed ID: 37037205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial silver resistance mechanisms: recent developments.
    Terzioğlu E; Arslan M; Balaban BG; Çakar ZP
    World J Microbiol Biotechnol; 2022 Jul; 38(9):158. PubMed ID: 35821348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control.
    Kashyap AS; Manzar N; Vishwakarma SK; Mahajan C; Dey U
    World J Microbiol Biotechnol; 2024 Feb; 40(3):104. PubMed ID: 38372816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus.
    Hsueh YH; Tsai PH; Lin KS
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28397766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu Nanoparticles Have Different Impacts in Escherichia coli and Lactobacillus brevis than Their Microsized and Ionic Analogues.
    Kaweeteerawat C; Chang CH; Roy KR; Liu R; Li R; Toso D; Fischer H; Ivask A; Ji Z; Zink JI; Zhou ZH; Chanfreau GF; Telesca D; Cohen Y; Holden PA; Nel AE; Godwin HA
    ACS Nano; 2015 Jul; 9(7):7215-25. PubMed ID: 26168153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces.
    Birkett M; Dover L; Cherian Lukose C; Wasy Zia A; Tambuwala MM; Serrano-Aroca Á
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic copper as an antimicrobial surface.
    Grass G; Rensing C; Solioz M
    Appl Environ Microbiol; 2011 Mar; 77(5):1541-7. PubMed ID: 21193661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses.
    Khezerlou A; Alizadeh-Sani M; Azizi-Lalabadi M; Ehsani A
    Microb Pathog; 2018 Oct; 123():505-526. PubMed ID: 30092260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.
    Villanueva ME; Diez AM; González JA; Pérez CJ; Orrego M; Piehl L; Teves S; Copello GJ
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16280-8. PubMed ID: 27295333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives.
    Tortella GR; Pieretti JC; Rubilar O; Fernández-Baldo M; Benavides-Mendoza A; Diez MC; Seabra AB
    Crit Rev Biotechnol; 2022 May; 42(3):431-449. PubMed ID: 34233551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Attenuated Copper Doped Zirconia Nanoparticles Enhances In Vitro Antimicrobial Properties.
    Nishakavya S; Girigoswami A; Gopikrishna A; Deepa R; Divya A; Ajith S; Girigoswami K
    Appl Biochem Biotechnol; 2022 Aug; 194(8):3435-3452. PubMed ID: 35366183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, biomedical applications, and toxicity of CuO nanoparticles.
    Naz S; Gul A; Zia M; Javed R
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1039-1061. PubMed ID: 36635395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide.
    Ishida N; Hosokawa Y; Imaeda T; Hatanaka T
    Appl Biochem Biotechnol; 2020 Feb; 190(2):645-659. PubMed ID: 31422560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells.
    Rodhe Y; Skoglund S; Odnevall Wallinder I; Potácová Z; Möller L
    Toxicol In Vitro; 2015 Oct; 29(7):1711-9. PubMed ID: 26028147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial Nano-Agents: The Copper Age.
    Ermini ML; Voliani V
    ACS Nano; 2021 Apr; 15(4):6008-6029. PubMed ID: 33792292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential exposure and hazards of copper nanoparticles: A review.
    Ameh T; Sayes CM
    Environ Toxicol Pharmacol; 2019 Oct; 71():103220. PubMed ID: 31306862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action.
    Nisar P; Ali N; Rahman L; Ali M; Shinwari ZK
    J Biol Inorg Chem; 2019 Oct; 24(7):929-941. PubMed ID: 31515623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.