These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37445765)

  • 1. Transcriptome Screening of Long Noncoding RNAs and Their Target Protein-Coding Genes Unmasks a Dynamic Portrait of Seed Coat Coloration Associated with Anthocyanins in Tibetan Hulless Barley.
    Zheng K; Wu X; Xue X; Li W; Wang Z; Chen J; Zhang Y; Qiao F; Zhao H; Zhang F; Han S
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and regulation of anthocyanins in white and purple Tibetan Hulless Barley (Hordeum vulgare L. var. nudum Hook. f.) revealed by combined de novo transcriptomics and metabolomics.
    Yao X; Yao Y; An L; Li X; Bai Y; Cui Y; Wu K
    BMC Plant Biol; 2022 Aug; 22(1):391. PubMed ID: 35922757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and functional analysis of long non-coding RNA (lncRNA) and metabolites response to mowing in hulless barley (Hordeum vulgare L. var. nudum hook. f.).
    Bai Y; He J; Yao Y; An L; Cui Y; Li X; Yao X; Xiao S; Wu K
    BMC Plant Biol; 2024 Jul; 24(1):666. PubMed ID: 38997634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) developing grains, with emphasis on quality properties.
    Chen X; Long H; Gao P; Deng G; Pan Z; Liang J; Tang Y; Tashi N; Yu M
    PLoS One; 2014; 9(5):e98144. PubMed ID: 24871534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (
    Yao X; Wu K; Yao Y; Bai Y; Ye J; Chi D
    Hereditas; 2018; 155():37. PubMed ID: 30473656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum).
    Liang J; Zhang H; Yi L; Tang Y; Long H; Yu M; Deng G
    Genes Genomics; 2021 Dec; 43(12):1445-1461. PubMed ID: 34480266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression analysis of miRNAs in germination and seedling growth of Tibetan hulless barley.
    Dou X; Zhou Z; Zhao L
    Genomics; 2021 Nov; 113(6):3735-3749. PubMed ID: 34517091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved high-quality genome assembly and annotation of Tibetan hulless barley.
    Zeng X; Xu T; Ling Z; Wang Y; Li X; Xu S; Xu Q; Zha S; Qimei W; Basang Y; Dunzhu J; Yu M; Yuan H; Nyima T
    Sci Data; 2020 May; 7(1):139. PubMed ID: 32385314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration.
    Xu C; Abbas HMK; Zhan C; Huang Y; Huang S; Yang H; Wang Y; Yuan H; Luo J; Zeng X
    Front Plant Sci; 2022; 13():1038625. PubMed ID: 36388537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.
    Zeng X; Long H; Wang Z; Zhao S; Tang Y; Huang Z; Wang Y; Xu Q; Mao L; Deng G; Yao X; Li X; Bai L; Yuan H; Pan Z; Liu R; Chen X; WangMu Q; Chen M; Yu L; Liang J; DunZhu D; Zheng Y; Yu S; LuoBu Z; Guang X; Li J; Deng C; Hu W; Chen C; TaBa X; Gao L; Lv X; Abu YB; Fang X; Nevo E; Yu M; Wang J; Tashi N
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1095-100. PubMed ID: 25583503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley.
    Lai Y; Zhang D; Wang J; Wang J; Ren P; Yao L; Si E; Kong Y; Wang H
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31935789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and expression analysis of the anthocyanin-related genes during seed coat development in six Brassica species.
    Chen D; Chen H; Dai G; Zhang H; Liu Y; Shen W; Zhu B; Cui C; Tan C
    BMC Genomics; 2023 Mar; 24(1):103. PubMed ID: 36894869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barley long non-coding RNAs (lncRNA) responsive to excess boron.
    Unver T; Tombuloglu H
    Genomics; 2020 Mar; 112(2):1947-1955. PubMed ID: 31730798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.
    Kovinich N; Saleem A; Arnason JT; Miki B
    BMC Genomics; 2011 Jul; 12():381. PubMed ID: 21801362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley.
    Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T
    BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous melatonin improves growth in hulless barley seedlings under cold stress by influencing the expression rhythms of circadian clock genes.
    Chang T; Zhao Y; He H; Xi Q; Fu J; Zhao Y
    PeerJ; 2021; 9():e10740. PubMed ID: 33552735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis of major lodging resistant factors in hulless barley.
    Bai Y; Zhao X; Yao X; Yao Y; Li X; Hou L; An L; Wu K; Wang Z
    Front Plant Sci; 2023; 14():1230792. PubMed ID: 37905169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.).
    Chen L; Cui Y; Yao Y; An L; Bai Y; Li X; Yao X; Wu K
    BMC Genomics; 2023 Apr; 24(1):166. PubMed ID: 37016311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel low-nitrogen stress-responsive long non-coding RNAs (lncRNA) in barley landrace B968 (Liuzhutouzidamai) at seedling stage.
    Chen Z; Jiang Q; Jiang P; Zhang W; Huang J; Liu C; Halford NG; Lu R
    BMC Plant Biol; 2020 Apr; 20(1):142. PubMed ID: 32252633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.