These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37446031)

  • 1. Using the Random Forest for Identifying Key Physicochemical Properties of Amino Acids to Discriminate Anticancer and Non-Anticancer Peptides.
    Deng Y; Ma S; Li J; Zheng B; Lv Z
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation.
    Yao L; Li W; Zhang Y; Deng J; Pang Y; Huang Y; Chung CR; Yu J; Chiang YC; Lee TY
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides.
    Bhattarai S; Kim KS; Tayara H; Chong KT
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating multiple sequence features for identifying anticancer peptides.
    Zou H; Yang F; Yin Z
    Comput Biol Chem; 2022 Aug; 99():107711. PubMed ID: 35667299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types.
    Deng H; Ding M; Wang Y; Li W; Liu G; Tang Y
    Comput Biol Med; 2023 May; 158():106844. PubMed ID: 37058760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree.
    Li Y; Ma D; Chen D; Chen Y
    Front Genet; 2023; 14():1165765. PubMed ID: 37065496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Random Forest Model for Peptide Classification Based on Virtual Docking Data.
    Feng H; Wang F; Li N; Xu Q; Zheng G; Sun X; Hu M; Xing G; Zhang G
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MLASM: Machine learning based prediction of anticancer small molecules.
    Balaji PD; Selvam S; Sohn H; Madhavan T
    Mol Divers; 2024 Aug; 28(4):2153-2161. PubMed ID: 38554168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MLACP: machine-learning-based prediction of anticancer peptides.
    Manavalan B; Basith S; Shin TH; Choi S; Kim MO; Lee G
    Oncotarget; 2017 Sep; 8(44):77121-77136. PubMed ID: 29100375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.
    Kumaran Nair SS; Subba Reddy NV; Hareesha KS
    Protein Pept Lett; 2012 Sep; 19(9):917-23. PubMed ID: 22486618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations.
    Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B
    J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.