These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Carbon materials for chemical capacitive energy storage. Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940 [TBL] [Abstract][Full Text] [Related]
26. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes. Zhan C; Jiang DE J Phys Chem Lett; 2016 Mar; 7(5):789-94. PubMed ID: 26884129 [TBL] [Abstract][Full Text] [Related]
27. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. Li S; Feng G; Cummings PT J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318 [TBL] [Abstract][Full Text] [Related]
28. A novel way for high value-added application of lignosulfonate: Producing lignosulfonate nanosheets/graphene ultrathin film electrodes for electrochemical capacitors. Wang M; Chao L; Pang J; Li Z; Wan Y; Jiang X; Mao Z; Liu W; Chen X; Zhang X Int J Biol Macromol; 2020 Oct; 161():666-673. PubMed ID: 32544587 [TBL] [Abstract][Full Text] [Related]
29. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes. Shim Y; Kim HJ; Jung Y Faraday Discuss; 2012; 154():249-63; discussion 313-33, 465-71. PubMed ID: 22455024 [TBL] [Abstract][Full Text] [Related]
30. Pyrene-Appended Boronic Acids on Graphene Foam Electrodes Provide Quantum Capacitance-Based Molecular Sensors for Lactate. Wikeley SM; Przybylowski J; Gardiner JE; James TD; Fletcher PJ; Isaacs MA; Lozano-Sanchez P; Caffio M; Marken F ACS Sens; 2024 Mar; 9(3):1565-1574. PubMed ID: 38447101 [TBL] [Abstract][Full Text] [Related]
31. Effect of ion concentration, solution and membrane permittivity on electric energy storage and capacitance. Tajparast M; Glavinović MI Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2385-2403. PubMed ID: 29885295 [TBL] [Abstract][Full Text] [Related]
32. Capacitance Determination for the Evaluation of Electrochemically Active Surface Area in a Catalyst Layer of NiFe-Layered Double Hydroxides for Anion Exchange Membrane Water Electrolyser. Xie Z; Qu W; Fisher EA; Fahlman J; Asazawa K; Hayashi T; Shirataki H; Murase H Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591377 [TBL] [Abstract][Full Text] [Related]
33. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions. Khademi M; Barz DPJ Langmuir; 2020 Apr; 36(16):4250-4260. PubMed ID: 32227968 [TBL] [Abstract][Full Text] [Related]
34. How microstructures, oxide layers, and charge transfer reactions influence double layer capacitances. Part 1: impedance spectroscopy and cyclic voltammetry to estimate electrochemically active surface areas (ECSAs). Schalenbach M; Selmert V; Kretzschmar A; Raijmakers L; Durmus YE; Tempel H; Eichel RA Phys Chem Chem Phys; 2024 May; 26(19):14288-14304. PubMed ID: 38693897 [TBL] [Abstract][Full Text] [Related]