These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 37446038)

  • 1. NLRP3 Inflammasome as a Potential Therapeutic Target in Dry Eye Disease.
    Zhuang D; Misra SL; Mugisho OO; Rupenthal ID; Craig JP
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Topics in Dry Eye Disease.
    Chiaradia PA; Zeman Bardeci LA; Dankert S; Mendaro MO; Grzybowski A
    Curr Pharm Des; 2017; 23(4):608-623. PubMed ID: 27928967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation.
    Huang B; Zhang N; Qiu X; Zeng R; Wang S; Hua M; Li Q; Nan K; Lin S
    J Control Release; 2024 Jan; 365():1-15. PubMed ID: 37972763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hyperosmolarity on annexin A1 on ocular surface epithelium in vitro.
    Fernandez-Torres MA; Lledó VE; Perez de Lara MJ; Guzman-Aranguez A
    Exp Eye Res; 2022 Nov; 224():109245. PubMed ID: 36087761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients.
    Zheng Q; Ren Y; Reinach PS; Xiao B; Lu H; Zhu Y; Qu J; Chen W
    Exp Eye Res; 2015 May; 134():133-40. PubMed ID: 25701684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species activated NLRP3 inflammasomes prime environment-induced murine dry eye.
    Zheng Q; Ren Y; Reinach PS; She Y; Xiao B; Hua S; Qu J; Chen W
    Exp Eye Res; 2014 Aug; 125():1-8. PubMed ID: 24836981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry eye disease: identification and therapeutic strategies for primary care clinicians and clinical specialists.
    Sheppard J; Shen Lee B; Periman LM
    Ann Med; 2023 Dec; 55(1):241-252. PubMed ID: 36576348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic inhibitors for the treatment of dry eye syndrome.
    Rodríguez-Pomar C; Pintor J; Colligris B; Carracedo G
    Expert Opin Pharmacother; 2017 Dec; 18(17):1855-1865. PubMed ID: 29115899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Mechanisms Responsible for Tear Hyperosmolarity-Induced Pathological Changes in the Eyes of Dry Eye Disease Patients.
    Harrell CR; Feulner L; Djonov V; Pavlovic D; Volarevic V
    Cells; 2023 Dec; 12(23):. PubMed ID: 38067183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagy in dry eye disease: Therapeutic implications of autophagy modulators on the ocular surface.
    Jeyabalan N; Pillai AM; Khamar P; Shetty R; Mohan RR; Ghosh A
    Indian J Ophthalmol; 2023 Apr; 71(4):1285-1291. PubMed ID: 37026260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive dry eye therapy: overcoming ocular surface barrier and combating inflammation, oxidation, and mitochondrial damage.
    Xia Y; Zhang Y; Du Y; Wang Z; Cheng L; Du Z
    J Nanobiotechnology; 2024 May; 22(1):233. PubMed ID: 38725011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aurantio-obtusin Alleviates Dry Eye Disease by Targeting NF-κB/NLRP3 Signaling in Rodent Models.
    Zhu D; Zheng N; Deng K; Li L
    Biochem Genet; 2024 Apr; 62(2):1-14. PubMed ID: 37633872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Nano-ophthalmology in Treating Dry Eye Disease.
    Natesan S; Boddu SHS; Krishnaswami V; Shahwan M
    Pharm Nanotechnol; 2020; 8(4):258-289. PubMed ID: 32600244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combination of CMC and α-MSH inhibited ROS activated NLRP3 inflammasome in hyperosmolarity stressed HCECs and scopolamine-induced dry eye rats.
    Lv Y; Chu C; Liu K; Ru Y; Zhang Y; Lu X; Gao Y; Zhang C; Zhao S
    Sci Rep; 2021 Jan; 11(1):1184. PubMed ID: 33441928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Inflammatories in the Treatment of Dry Eye Disease: A Review.
    Perez VL; Mah FS; Willcox M; Pflugfelder S
    J Ocul Pharmacol Ther; 2023 Mar; 39(2):89-101. PubMed ID: 36796014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of Wilms tumour 1-associated protein in diabetes-related dry eye disease by mediating m6A methylation modification of lncRNA NEAT1.
    Guo C; Yu M; Liu J; Jia Z; Liu H; Zhao S
    J Drug Target; 2024 Dec; 32(2):200-212. PubMed ID: 38153328
    [No Abstract]   [Full Text] [Related]  

  • 17. Emerging therapies for dry eye disease.
    Mason L; Jafri S; Dortonne I; Sheppard JD
    Expert Opin Emerg Drugs; 2021 Dec; 26(4):401-413. PubMed ID: 34846978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exosomes Derived from Mouse Adipose-Derived Mesenchymal Stem Cells Alleviate Benzalkonium Chloride-Induced Mouse Dry Eye Model via Inhibiting NLRP3 Inflammasome.
    Wang G; Li H; Long H; Gong X; Hu S; Gong C
    Ophthalmic Res; 2022; 65(1):40-51. PubMed ID: 34530425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular Pharmacology of Tear Film, Dry Eye, and Allergic Conjunctivitis.
    Gulati S; Jain S
    Handb Exp Pharmacol; 2017; 242():97-118. PubMed ID: 27913889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction.
    Ramos-Llorca A; Scarpellini C; Augustyns K
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.