BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37446306)

  • 41. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.
    Park SJ; Ciccone SL; Beck BD; Hwang B; Freie B; Clapp DW; Lee SH
    J Biol Chem; 2004 Jul; 279(29):30053-9. PubMed ID: 15138265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.
    Wilson JB; Yamamoto K; Marriott AS; Hussain S; Sung P; Hoatlin ME; Mathew CG; Takata M; Thompson LH; Kupfer GM; Jones NJ
    Oncogene; 2008 Jun; 27(26):3641-52. PubMed ID: 18212739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo.
    Li Y; Chen S; Yuan J; Yang Y; Li J; Ma J; Wu X; Freund M; Pollok K; Hanenberg H; Goebel WS; Yang FC
    Blood; 2009 Mar; 113(10):2342-51. PubMed ID: 19129541
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA.
    Waisfisz Q; de Winter JP; Kruyt FA; de Groot J; van der Weel L; Dijkmans LM; Zhi Y; Arwert F; Scheper RJ; Youssoufian H; Hoatlin ME; Joenje H
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10320-5. PubMed ID: 10468606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility.
    Ramanagoudr-Bhojappa R; Carrington B; Ramaswami M; Bishop K; Robbins GM; Jones M; Harper U; Frederickson SC; Kimble DC; Sood R; Chandrasekharappa SC
    PLoS Genet; 2018 Dec; 14(12):e1007821. PubMed ID: 30540754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage.
    Carreau M; Gan OI; Liu L; Doedens M; McKerlie C; Dick JE; Buchwald M
    Blood; 1998 Apr; 91(8):2737-44. PubMed ID: 9531583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for subcomplexes in the Fanconi anemia pathway.
    Medhurst AL; Laghmani el H; Steltenpool J; Ferrer M; Fontaine C; de Groot J; Rooimans MA; Scheper RJ; Meetei AR; Wang W; Joenje H; de Winter JP
    Blood; 2006 Sep; 108(6):2072-80. PubMed ID: 16720839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the hamster FancG/Xrcc9 gene and mutations in CHO UV40 and NM3.
    Lamerdin JE; Yamada NA; George JW; Souza B; Christian AT; Jones NJ; Thompson LH
    Mutagenesis; 2004 May; 19(3):237-44. PubMed ID: 15123790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair.
    van de Vrugt HJ; Harmsen T; Riepsaame J; Alexantya G; van Mil SE; de Vries Y; Bin Ali R; Huijbers IJ; Dorsman JC; Wolthuis RMF; Te Riele H
    Sci Rep; 2019 Jan; 9(1):768. PubMed ID: 30683899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA.
    Ferrer M; de Winter JP; Mastenbroek DC; Curiel DT; Gerritsen WR; Giaccone G; Kruyt FA
    Cancer Gene Ther; 2004 Aug; 11(8):539-46. PubMed ID: 15192709
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The phenotype of FancB-mutant mouse embryonic stem cells.
    Kim TM; Ko JH; Choi YJ; Hu L; Hasty P
    Mutat Res; 2011 Jul; 712(1-2):20-7. PubMed ID: 21458466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuous in vivo infusion of interferon-gamma (IFN-gamma) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice.
    Si Y; Ciccone S; Yang FC; Yuan J; Zeng D; Chen S; van de Vrugt HJ; Critser J; Arwert F; Haneline LS; Clapp DW
    Blood; 2006 Dec; 108(13):4283-7. PubMed ID: 16946306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional analysis of patient-derived mutations in the Fanconi anemia gene, FANCG/XRCC9.
    Nakanishi K; Moran A; Hays T; Kuang Y; Fox E; Garneau D; Montes de Oca R; Grompe M; D'Andrea AD
    Exp Hematol; 2001 Jul; 29(7):842-9. PubMed ID: 11438206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Four human FANCG polymorphic variants show normal biological function in hamster CHO cells.
    Hinz JM; Nham PB; Yamada NA; Tebbs RS; Salazar EP; Hinz AK; Mohrenweiser HW; Jones IM; Thompson LH
    Mutat Res; 2006 Dec; 602(1-2):34-42. PubMed ID: 17010390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fanconi anaemia in black South African patients heterozygous for the FANCG c.637-643delTACCGCC founder mutation.
    Wainstein T; Kerr R; Mitchell CL; Madaree S; Essop FB; Vorster E; Wainwright R; Poole J; Krause A
    S Afr Med J; 2013 Oct; 103(12 Suppl 1):970-3. PubMed ID: 24300640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity.
    Kuang Y; Garcia-Higuera I; Moran A; Mondoux M; Digweed M; D'Andrea AD
    Blood; 2000 Sep; 96(5):1625-32. PubMed ID: 10961856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fanconi anemia group A and C double-mutant mice: functional evidence for a multi-protein Fanconi anemia complex.
    Noll M; Battaile KP; Bateman R; Lax TP; Rathbun K; Reifsteck C; Bagby G; Finegold M; Olson S; Grompe M
    Exp Hematol; 2002 Jul; 30(7):679-88. PubMed ID: 12135664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks.
    Mason JM; Sekiguchi JM
    Hum Mol Genet; 2011 Jul; 20(13):2549-59. PubMed ID: 21478198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human alpha spectrin II and the FANCA, FANCC, and FANCG proteins bind to DNA containing psoralen interstrand cross-links.
    McMahon LW; Sangerman J; Goodman SR; Kumaresan K; Lambert MW
    Biochemistry; 2001 Jun; 40(24):7025-34. PubMed ID: 11401546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RAD51D- and FANCG-dependent base substitution mutagenesis at the ATP1A1 locus in mammalian cells.
    Hinz JM; Urbin SS; Thompson LH
    Mutat Res; 2009 Jun; 665(1-2):61-6. PubMed ID: 19427512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.