These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Graphene-supported tunable bidirectional terahertz metamaterials absorbers. Peng J; Leng J; Cao D; He X; Lin F; Liu F Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889 [TBL] [Abstract][Full Text] [Related]
6. Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure. Liu J; Li P; Chen Y; Song X; Mao Q; Wu Y; Qi F; Zheng B; He J; Yang H; Wen Q; Zhang W Opt Lett; 2016 Feb; 41(4):816-9. PubMed ID: 26872196 [TBL] [Abstract][Full Text] [Related]
7. Tunable terahertz absorption of ion gel-graphene hybrids based on the Salisbury effect. Li Q; Mei L; Bi K; Hou L; Zhang S; Han S; Guo M; Zhang S; Wu D; Mu J; Chou X Opt Express; 2024 Mar; 32(7):11838-11848. PubMed ID: 38571022 [TBL] [Abstract][Full Text] [Related]
8. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene. Zhou Y; Xu X; Fan H; Ren Z; Bai J; Wang L Phys Chem Chem Phys; 2013 Apr; 15(14):5084-90. PubMed ID: 23450161 [TBL] [Abstract][Full Text] [Related]
9. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials. Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270 [TBL] [Abstract][Full Text] [Related]
10. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Valmorra F; Scalari G; Maissen C; Fu W; Schönenberger C; Choi JW; Park HG; Beck M; Faist J Nano Lett; 2013 Jul; 13(7):3193-8. PubMed ID: 23802181 [TBL] [Abstract][Full Text] [Related]
11. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO Wei M; Zhang D; Li Y; Zhang L; Jin L; Wen T; Bai F; Zhang H Nanoscale Res Lett; 2019 May; 14(1):159. PubMed ID: 31076907 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the efficiency of graphene-based THz modulator by optimizing the Brewster angle. Li XY; Zhang ZH; Zhao XY; Zhang TY; Tao LQ; Huang ZY; Li Y; Wu XH; Yin L; Yuan Y; Li BY Opt Express; 2022 Oct; 30(21):38095-38103. PubMed ID: 36258392 [TBL] [Abstract][Full Text] [Related]
13. Graphene-supported tunable extraordinary transmission. He X; Lu H Nanotechnology; 2014 Aug; 25(32):325201. PubMed ID: 25060732 [TBL] [Abstract][Full Text] [Related]
14. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Chen Z; Chen X; Tao L; Chen K; Long M; Liu X; Yan K; Stantchev RI; Pickwell-MacPherson E; Xu JB Nat Commun; 2018 Nov; 9(1):4909. PubMed ID: 30464172 [TBL] [Abstract][Full Text] [Related]
16. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Shi SF; Zeng B; Han HL; Hong X; Tsai HZ; Jung HS; Zettl A; Crommie MF; Wang F Nano Lett; 2015 Jan; 15(1):372-7. PubMed ID: 25483819 [TBL] [Abstract][Full Text] [Related]
17. Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials. Yan X; Wang T; Xiao S; Liu T; Hou H; Cheng L; Jiang X Sci Rep; 2017 Oct; 7(1):13917. PubMed ID: 29066769 [TBL] [Abstract][Full Text] [Related]
18. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials. Zhuo S; Liu Z; Zhou F; Qin Y; Luo X; Ji C; Yang G; Yang R; Xie Y Opt Express; 2022 Dec; 30(26):47647-47658. PubMed ID: 36558688 [TBL] [Abstract][Full Text] [Related]
19. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Li H; Xu W; Cui Q; Wang Y; Yu J Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540 [TBL] [Abstract][Full Text] [Related]
20. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime. Zhou S; Lai P; Dong G; Li P; Li Y; Zhu Z; Guan C; Shi J Opt Express; 2019 May; 27(11):15359-15367. PubMed ID: 31163733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]