These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37446453)

  • 1. Exploring Material Properties and Device Output Performance of a Miniaturized Flexible Thermoelectric Generator Using Scalable Synthesis of Bi
    Yuan Z; Zhao X; Wang C; Hang S; Li M; Liu Y
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Power All-Carbon Fully Printed and Wearable SWCNT-Based Organic Thermoelectric Generator.
    Mytafides CK; Tzounis L; Karalis G; Formanek P; Paipetis AS
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11151-11165. PubMed ID: 33646742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing High-Performance and Low-Cost Paint Thermoelectric Materials for Low-Midtemperature Applications.
    Yilmaz M; Yusuf A; Gurkan K; Ballikaya S
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12661-12671. PubMed ID: 38427785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Ag-Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators.
    Mallick MM; Rösch AG; Franke L; Ahmed S; Gall A; Geßwein H; Aghassi J; Lemmer U
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19655-19663. PubMed ID: 32267668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu
    Mallick MM; Franke L; Rösch AG; Ahmad S; Geßwein H; Eggeler YM; Rohde M; Lemmer U
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61386-61395. PubMed ID: 34910878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks.
    Madan D; Wang Z; Chen A; Wright PK; Evans JW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11872-6. PubMed ID: 24160841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically Transformed Ag
    Kashyap A; Rawat D; Sarkar D; Singh NK; Biswas K; Soni A
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202401234. PubMed ID: 38252519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Brittle to Ductile: A Scalable and Tailorable All-Inorganic Semiconductor Foil through a Rolling Process toward Flexible Thermoelectric Modules.
    Liang J; Zhang X; Wan C
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52017-52024. PubMed ID: 36356197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance n-Type Carbon Nanotubes Doped by Oxidation of Neighboring Sb
    Kim S; Mo JH; Jang KS
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43778-43784. PubMed ID: 32870650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of PEDOT nanowire/Te nanowire nanocomposites and fabrication of a flexible thermoelectric generator.
    Liu H; Liu P; Zhang M; Tian Z; Wang N; Liu Y; Zhang X
    RSC Adv; 2020 Sep; 10(56):33965-33971. PubMed ID: 35519064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Thermoelectric Performance of n-Type Bi
    Li M; Zhang Y; Zhang T; Zuo Y; Xiao K; Arbiol J; Llorca J; Liu Y; Cabot A
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-Type PVA/MWCNT-Sb
    Andzane J; Buks K; Bitenieks J; Bugovecka L; Kons A; Merijs-Meri R; Svirksts J; Zicans J; Erts D
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma-jet printing of colloidal thermoelectric Bi
    Manzi J; Weltner AE; Varghese T; McKibben N; Busuladzic-Begic M; Estrada D; Subbaraman H
    Nanoscale; 2023 Apr; 15(14):6596-6606. PubMed ID: 36916135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically Switchable n-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting.
    Xiong Y; Zhou G; Lai NC; Wang X; Lu YC; Prezhdo OV; Xu D
    ACS Nano; 2021 Feb; 15(2):2791-2799. PubMed ID: 33556241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Figure-of-Merit Telluride-Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic-Curing for Fully Printed Thermoelectric Generators.
    Mallick MM; Franke L; Rösch AG; Geßwein H; Long Z; Eggeler YM; Lemmer U
    Adv Sci (Weinh); 2022 Nov; 9(31):e2202411. PubMed ID: 36106362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Waterproof Flexible Paper-Based Thermoelectric Generator for Humidity and Underwater Environments.
    Huang Y; Wang W; Chang S; Bao A; Liu Y; Li R; Xiong J
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin MEMS thermoelectric generator with Bi
    Liu Y; Mu E; Wu Z; Che Z; Sun F; Fu X; Wang F; Wang X; Hu Z
    Nano Converg; 2020 Mar; 7(1):8. PubMed ID: 32124134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies.
    Wen DL; Liu X; Bao JF; Li GK; Feng T; Zhang F; Liu D; Zhang XS
    ACS Appl Mater Interfaces; 2021 May; 13(18):21401-21410. PubMed ID: 33942604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-Printed Flexible Thermoelectric Device Based on Hybrid Silver Selenide/PVP Composite Films.
    Liu D; Zhao Y; Yan Z; Zhang Z; Zhang Y; Shi P; Xue C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh Performance of n-Type Ag
    Jiang C; Ding Y; Cai K; Tong L; Lu Y; Zhao W; Wei P
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9646-9655. PubMed ID: 32009375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.