BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37446501)

  • 1. Fabrication of UV-Curable Polysiloxane Coating with Tunable Refractive Index Based on Controllable Hydrolysis.
    Huang HL; Shi QK; Deng Y; Lei XY; Zhang QH; Chen JJ; Deng XR
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template-Free Fabrication of Refractive Index Tunable Polysiloxane Coating Using Homogeneous Embedding Strategy: Application in High-Power Laser System.
    Deng XR; Lei XY; Yang W; Hui HH; Wang TY; Chen JJ; Zhu JL; Zhang QH
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32098387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Refractive Index Tunable Coating with Moisture-Resistant Function for High-Power Laser Systems Based on Homogeneous Embedding of Surface-Modified Nanoparticles.
    Yang W; Lei X; Hui H; Zhang Q; Deng X
    Molecules; 2018 May; 23(5):. PubMed ID: 29735949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of Silica Nanoparticles in Sol-Gel Processes to Create Optical Coatings with Controllable Ultralow Refractive Indices.
    Chi F; Zeng Y; Liu C; Liang D; Li Y; Xie R; Pan N; Ding C
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16887-16895. PubMed ID: 32182423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44.
    Thomas IM
    Appl Opt; 1992 Oct; 31(28):6145-9. PubMed ID: 20733821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating.
    Elhadj S; Steele WA; VanBlarcom DS; Hawley RA; Schaffers KI; Geraghty P
    Appl Opt; 2017 Mar; 56(8):2217-2225. PubMed ID: 28375305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanolaminate-based design for UV laser mirror coatings.
    Zhu M; Xu N; Roshanzadeh B; Boyd STP; Rudolph W; Chai Y; Shao J
    Light Sci Appl; 2020; 9():20. PubMed ID: 32128160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles.
    Li Y; Zhang L; Li C
    J Colloid Interface Sci; 2020 Feb; 559():273-281. PubMed ID: 31634671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedding constructed refractive index graded antireflective coating with high abrasion resistance and environmental stability for polycarbonate glass.
    Zhang C; Zhao H; Su Y; Wang H; Shen J; Wang X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):13-21. PubMed ID: 34626961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend.
    Li Y; Hao Y; Huang C; Chen X; Chen X; Cui Y; Yuan C; Qiu K; Ge H; Chen Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13685-13693. PubMed ID: 28361542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step index-tunable antireflection coatings from aggregated silica nanoparticles.
    Cook KT; Tettey KE; Bunch RM; Lee D; Nolte AJ
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6426-31. PubMed ID: 23198825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Wear Resistance and Environmental Adaptability of a Polysiloxane/Molybdenum Disulfide Composite Lubricating Coating Using Polyhedral Oligomeric Silsesquioxane.
    Zhao Z; Ma Y; Ju P; Wu Y; Chen L; Zhou H; Chen J
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36105-36115. PubMed ID: 35899424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable High Refractive Index Polymer Hybrid and Polymer-Inorganic Nanocomposite Coatings.
    Ritchie AW; Cox HJ; Gonabadi HI; Bull SJ; Badyal JPS
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33477-33484. PubMed ID: 34254516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO2 layers and laser damage resistant, broad bandwidth, high-reflection coatings.
    Bellum J; Field E; Kletecka D; Long F
    Appl Opt; 2014 Feb; 53(4):A205-11. PubMed ID: 24514216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflection coating design for plastic optics.
    Schulz U; Schallenberg UB; Kaiser N
    Appl Opt; 2002 Jun; 41(16):3107-10. PubMed ID: 12064387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Fabrication of Polymer Microcapsules with Controlled Shell Composition and Tunable Performance via Photopolymerization.
    Wu K; Wei Z; Liu R; Sun G; Luo J
    Langmuir; 2023 May; 39(21):7371-7379. PubMed ID: 37191663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.
    Schubert MF; Mont FW; Chhajed S; Poxson DJ; Kim JK; Schubert EF
    Opt Express; 2008 Apr; 16(8):5290-8. PubMed ID: 18542630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV-curable ladder-like diphenylsiloxane-bridged methacryl-phenyl-siloxane for high power LED encapsulation.
    Shang XX; Duan S; Zhang M; Cao XY; Zheng K; Zhang JN; Ma YM; Zhang RB
    RSC Adv; 2018 Feb; 8(17):9049-9056. PubMed ID: 35541877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.