These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37446663)

  • 1. Water-Induced Regeneration of a 2,2-Diphenyl-1-picrylhydrazyl Radical after Its Scandium Ion-Promoted Electron-Transfer Disproportionation in an Aprotic Medium.
    Nakanishi I; Shoji Y; Ohkubo K; Ito H; Fukuzumi S
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scandium Ion-Promoted Electron-Transfer Disproportionation of 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO
    Shoji Y; Terashima Y; Ohkubo K; Ito H; Maruyama K; Fukuzumi S; Nakanishi I
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical as a model of reactive oxygen species catalysed by Lewis and/or Brønsted acids.
    Nakanishi I; Kawashima T; Ohkubo K; Waki T; Uto Y; Kamada T; Ozawa T; Matsumoto K; Fukuzumi S
    Chem Commun (Camb); 2014 Jan; 50(7):814-6. PubMed ID: 24292255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scandium ion-promoted reduction of heterocyclic N=N double bond. Hydride transfer vs electron transfer.
    Fukuzumi S; Yuasa J; Suenobu T
    J Am Chem Soc; 2002 Oct; 124(42):12566-73. PubMed ID: 12381201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives.
    Kawashima T; Ohkubo K; Fukuzumi S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3344-52. PubMed ID: 21212887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion-catalyzed cycloaddition vs hydride transfer reactions of NADH analogues with p-benzoquinones.
    Fukuzumi S; Fujii Y; Suenobu T
    J Am Chem Soc; 2001 Oct; 123(42):10191-9. PubMed ID: 11603968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lewis acid-induced change from four- to two-electron reduction of dioxygen catalyzed by copper complexes using scandium triflate.
    Kakuda S; Rolle CJ; Ohkubo K; Siegler MA; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2015 Mar; 137(9):3330-7. PubMed ID: 25659416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scandium ion-promoted photoinduced electron transfer from electron donors to acridine and pyrene. Essential role of scandium ion in photocatalytic oxygenation of hexamethylbenzene.
    Fukuzumi S; Yuasa J; Satoh N; Suenobu T
    J Am Chem Soc; 2004 Jun; 126(24):7585-94. PubMed ID: 15198606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(IV)-oxo complex.
    Park J; Morimoto Y; Lee YM; You Y; Nam W; Fukuzumi S
    Inorg Chem; 2011 Nov; 50(22):11612-22. PubMed ID: 22010853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.
    Nishida Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2014 Jun; 136(22):8042-9. PubMed ID: 24809677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of scandium ion catalyzed Diels-Alder reaction of anthracenes with methyl vinyl ketone.
    Fukuzumi S; Yuasa J; Miyagawa T; Suenobu T
    J Phys Chem A; 2005 Apr; 109(14):3174-81. PubMed ID: 16833646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic borderline of one-step hydrogen atom transfer versus stepwise Sc(3+)-coupled electron transfer from benzyl alcohol derivatives to a non-heme iron(IV)-oxo complex.
    Morimoto Y; Park J; Suenobu T; Lee YM; Nam W; Fukuzumi S
    Inorg Chem; 2012 Sep; 51(18):10025-36. PubMed ID: 22954389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual reactivity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) with Fe
    Djitieu Deutchoua AD; Ngueumaleu Y; Liendji RW; Poungoue Hanga SS; Nguelo BB; Dedzo GK; Ngameni E
    RSC Adv; 2024 Jan; 14(2):1354-1359. PubMed ID: 38174244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant enhancement of electron transfer reduction of NAD(+) analogues by complexation with scandium ion and the detection of the radical intermediate-scandium ion complex.
    Fukuzumi S; Inada O; Satoh N; Suenobu T; Imahori H
    J Am Chem Soc; 2002 Aug; 124(31):9181-8. PubMed ID: 12149023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scandium ion-promoted photoinduced electron-transfer oxidation of fullerenes and derivatives by p-chloranil and p-benzoquinone.
    Fukuzumi S; Mori H; Imahori H; Suenobu T; Araki Y; Ito O; Kadish KM
    J Am Chem Soc; 2001 Dec; 123(50):12458-65. PubMed ID: 11741408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding modes in metal ion complexes of quinones and semiquinone radical anions: electron-transfer reactivity.
    Yuasa J; Suenobu T; Fukuzumi S
    Chemphyschem; 2006 Apr; 7(4):942-54. PubMed ID: 16521156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of water in the dynamic disproportionation of Zn-based TCNQ(F4) coordination polymers (TCNQ = tetracyanoquinodimethane).
    Nafady A; Le TH; Vo N; Haworth NL; Bond AM; Martin LL
    Inorg Chem; 2014 Feb; 53(4):2268-75. PubMed ID: 24495206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic dichotomy in scandium ion-promoted hydride transfer of an NADH analogue: delicate balance between one-step hydride-transfer and electron-transfer pathways.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2006 Nov; 128(46):14938-48. PubMed ID: 17105305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metal ions on photoinduced electron transfer in zinc porphyrin-naphthalenediimide linked systems.
    Okamoto K; Mori Y; Yamada H; Imahori H; Fukuzumi S
    Chemistry; 2004 Jan; 10(2):474-83. PubMed ID: 14735516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of reaction environments on radical-scavenging mechanisms of ascorbic acid.
    Nakanishi I; Shoji Y; Ohkubo K; Fukuhara K; Ozawa T; Matsumoto KI; Fukuzumi S
    J Clin Biochem Nutr; 2021 Mar; 68(2):116-122. PubMed ID: 33879962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.