These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37446899)
1. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration. Trzaskowska M; Vivcharenko V; Franus W; Goryczka T; Barylski A; Przekora A Molecules; 2023 Jul; 28(13):. PubMed ID: 37446899 [TBL] [Abstract][Full Text] [Related]
2. Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications. Kazimierczak P; Palka K; Przekora A Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480579 [TBL] [Abstract][Full Text] [Related]
3. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
4. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
6. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
7. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
8. The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro. Kazimierczak P; Koziol M; Przekora A Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498630 [TBL] [Abstract][Full Text] [Related]
9. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects. Anitha A; Joseph J; Menon D; Nair SV; Nair MB Tissue Eng Part A; 2017 Apr; 23(7-8):345-358. PubMed ID: 28093043 [TBL] [Abstract][Full Text] [Related]
10. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
11. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
12. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
13. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration. Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958 [TBL] [Abstract][Full Text] [Related]
14. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Tamburaci S; Tihminlioglu F Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724 [TBL] [Abstract][Full Text] [Related]
15. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Deepthi S; Venkatesan J; Kim SK; Bumgardner JD; Jayakumar R Int J Biol Macromol; 2016 Dec; 93(Pt B):1338-1353. PubMed ID: 27012892 [TBL] [Abstract][Full Text] [Related]
16. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
17. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Torres PMC; Ribeiro N; Nunes CMM; Rodrigues AFM; Sousa A; Olhero SM Biomater Adv; 2022 Mar; 134():112690. PubMed ID: 35581087 [TBL] [Abstract][Full Text] [Related]
19. Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering. Adamski R; Siuta D Molecules; 2021 Mar; 26(7):. PubMed ID: 33807434 [TBL] [Abstract][Full Text] [Related]
20. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]