These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37446899)
21. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Iviglia G; Cassinelli C; Torre E; Baino F; Morra M; Vitale-Brovarone C Acta Biomater; 2016 Oct; 44():97-109. PubMed ID: 27521494 [TBL] [Abstract][Full Text] [Related]
22. Production of Agarose-Hydroxyapatite Composites via Supercritical Gel Drying, for Bone Tissue Engineering. Zanotti A; Baldino L; Cardea S; Reverchon E Molecules; 2024 May; 29(11):. PubMed ID: 38893374 [TBL] [Abstract][Full Text] [Related]
23. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Eskandari N; Shafiei SS Mol Biotechnol; 2021 Jun; 63(6):477-490. PubMed ID: 33755861 [TBL] [Abstract][Full Text] [Related]
24. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Ko HF; Sfeir C; Kumta PN Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112 [TBL] [Abstract][Full Text] [Related]
25. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Tamburaci S; Tihminlioglu F Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112298. PubMed ID: 34474849 [TBL] [Abstract][Full Text] [Related]
26. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Rodrigues SC; Salgado CL; Sahu A; Garcia MP; Fernandes MH; Monteiro FJ J Biomed Mater Res A; 2013 Apr; 101(4):1080-94. PubMed ID: 23008173 [TBL] [Abstract][Full Text] [Related]
27. Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. Acevedo CA; Olguín Y; Briceño M; Forero JC; Osses N; Díaz-Calderón P; Jaques A; Ortiz R Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():875-886. PubMed ID: 30889762 [TBL] [Abstract][Full Text] [Related]
28. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering. Huang D; Zuo Y; Zou Q; Wang Y; Gao S; Wang X; Liu H; Li Y J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):51-7. PubMed ID: 21953937 [TBL] [Abstract][Full Text] [Related]
29. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Bagchi A; Meka SR; Rao BN; Chatterjee K Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989 [TBL] [Abstract][Full Text] [Related]
30. Hydroxyapatite or Fluorapatite-Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?-A Comprehensive Comparative Study. Kazimierczak P; Wessely-Szponder J; Palka K; Barylyak A; Zinchenko V; Przekora A Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982648 [TBL] [Abstract][Full Text] [Related]
31. Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Prakash J; Prema D; Venkataprasanna KS; Balagangadharan K; Selvamurugan N; Venkatasubbu GD Int J Biol Macromol; 2020 Jul; 154():62-71. PubMed ID: 32173442 [TBL] [Abstract][Full Text] [Related]
32. Could Curdlan/Whey Protein Isolate/Hydroxyapatite Biomaterials Be Considered as Promising Bone Scaffolds?-Fabrication, Characterization, and Evaluation of Cytocompatibility towards Osteoblast Cells In Vitro. Klimek K; Palka K; Truszkiewicz W; Douglas TEL; Nurzynska A; Ginalska G Cells; 2022 Oct; 11(20):. PubMed ID: 36291119 [TBL] [Abstract][Full Text] [Related]
33. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Im O; Li J; Wang M; Zhang LG; Keidar M Int J Nanomedicine; 2012; 7():2087-99. PubMed ID: 22619545 [TBL] [Abstract][Full Text] [Related]
34. Recent Developments in Polymer Nanocomposites for Bone Regeneration. Abbas M; Alqahtani MS; Alhifzi R Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724 [TBL] [Abstract][Full Text] [Related]
35. Nanobiocomposite based on natural polyelectrolytes for bone regeneration. Belluzo MS; Medina LF; Molinuevo MS; Cortizo MS; Cortizo AM J Biomed Mater Res A; 2020 May; 108(7):1467-1478. PubMed ID: 32170892 [TBL] [Abstract][Full Text] [Related]
36. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. Shakir M; Jolly R; Khan MS; Iram Ne; Khan HM Int J Biol Macromol; 2015 Sep; 80():282-92. PubMed ID: 26116779 [TBL] [Abstract][Full Text] [Related]
37. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
38. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810 [TBL] [Abstract][Full Text] [Related]
39. Full physicochemical and biocompatibility characterization of a supercritical CO Souto-Lopes M; Grenho L; Manrique YA; Dias MM; Fernandes MH; Monteiro FJ; Salgado CL Biomater Adv; 2023 Mar; 146():213280. PubMed ID: 36682201 [TBL] [Abstract][Full Text] [Related]
40. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Bhowmick A; Pramanik N; Jana P; Mitra T; Gnanamani A; Das M; Kundu PP Int J Biol Macromol; 2017 Feb; 95():348-356. PubMed ID: 27865958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]