BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37447030)

  • 1. The Influence of Elevated CO
    Chunzhuk EA; Grigorenko AV; Kiseleva SV; Chernova NI; Ryndin KG; Kumar V; Vlaskin MS
    Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37447030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Light Intensity on the Growth and Biochemical Composition in Various Microalgae Grown at High CO
    Chunzhuk EA; Grigorenko AV; Kiseleva SV; Chernova NI; Vlaskin MS; Ryndin KG; Butyrin AV; Ambaryan GN; Dudoladov AO
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content.
    Andreeva A; Budenkova E; Babich O; Sukhikh S; Dolganyuk V; Michaud P; Ivanova S
    Mar Drugs; 2021 Jul; 19(7):. PubMed ID: 34356806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a general kinetic microalgae model: Extending a semi-deterministic green microalgae model for the cyanobacterium Arthrospira platensis and red alga Porphyridium purpureum.
    Manhaeghe D; Arashiro LT; Van Hulle SWH; Rousseau DPL
    Bioresour Technol; 2021 Dec; 342():125993. PubMed ID: 34592617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.
    Hu X; Zhou J; Liu G; Gui B
    J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents.
    Zhao Y; Li J; Ma X; Fang X; Zhu B; Pan K
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6744-6754. PubMed ID: 34462853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of antioxidant activities of Arthrospira platensis and Chlorella vulgaris by modified culture conditions.
    Aslanbay Guler B; Demirel Z; Imamoglu E
    Bioprocess Biosyst Eng; 2024 Feb; 47(2):275-287. PubMed ID: 38286864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris.
    Markou G; Iconomou D; Sotiroudis T; Israilides C; Muylaert K
    Bioresour Technol; 2015 Nov; 196():459-68. PubMed ID: 26280098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable production of 4-aminobutyric acid (GABA) and cultivation of Chlorella sorokiniana and Chlorella vulgaris as circular economy.
    Xue C; Ng IS
    Bioresour Technol; 2022 Jan; 343():126089. PubMed ID: 34624471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring lipids profile, CO
    Farooq W; Naqvi SR; Sajid M; Shrivastav A; Kumar K
    J Biotechnol; 2022 Feb; 345():30-39. PubMed ID: 34995559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.
    Smetana S; Sandmann M; Rohn S; Pleissner D; Heinz V
    Bioresour Technol; 2017 Dec; 245(Pt A):162-170. PubMed ID: 28892686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effect of CO
    Sheng Y; Mathimani T; Brindhadevi K; Basha S; Elfasakhany A; Xia C; Pugazhendhi A
    Sci Total Environ; 2022 Feb; 808():151969. PubMed ID: 34843758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO
    Comitre AA; Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2021 Feb; 321():124452. PubMed ID: 33310412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Microalgae Styrene-Butadiene Composites Using
    Bumbac M; Nicolescu CM; Olteanu RL; Gherghinoiu SC; Bumbac C; Tiron O; Manea EE; Radulescu C; Gorghiu LM; Stanescu SG; Serban BC; Buiu O
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.