BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37447469)

  • 1. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging.
    Hernández-Varela JD; Medina DI
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials.
    Oliveira G; Passos CP; Ferreira P; Coimbra MA; Gonçalves I
    Foods; 2021 Mar; 10(3):. PubMed ID: 33806924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials.
    Hernández-Varela JD; Chanona-Pérez JJ; Foruzanmehr R; Medina DI
    Biopolymers; 2024 Jun; ():e23585. PubMed ID: 38847141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials.
    Asgher M; Qamar SA; Bilal M; Iqbal HMN
    Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging.
    Cacciotti I; Mori S; Cherubini V; Nanni F
    Int J Biol Macromol; 2018 Jun; 112():567-575. PubMed ID: 29408420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films.
    Karimi Sani I; Masoudpour-Behabadi M; Alizadeh Sani M; Motalebinejad H; Juma ASM; Asdagh A; Eghbaljoo H; Khodaei SM; Rhim JW; Mohammadi F
    Food Chem; 2023 Mar; 405(Pt B):134964. PubMed ID: 36435110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects.
    Cruz RMS; Krauter V; Krauter S; Agriopoulou S; Weinrich R; Herbes C; Scholten PBV; Uysal-Unalan I; Sogut E; Kopacic S; Lahti J; Rutkaite R; Varzakas T
    Foods; 2022 Oct; 11(19):. PubMed ID: 36230164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Uses of Spent Coffee Grounds in the Food Industry.
    Franca AS; Oliveira LS
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent.
    Nguyen HC; Nguyen ML; Wang FM; Juan HY; Su CH
    Bioresour Technol; 2020 Jan; 296():122334. PubMed ID: 31698223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview.
    Khodaei D; Álvarez C; Mullen AM
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues.
    Zhang C; Wang C; Cao G; Wang D; Ho SH
    J Hazard Mater; 2020 Apr; 388():121773. PubMed ID: 31836373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of Liquor Waste Derived Spent Coffee Grains for the Development of Injection-Molded Polylactide Pieces of Interest as Disposable Food Packaging and Serving Materials.
    Terroba-Delicado E; Fiori S; Gomez-Caturla J; Montanes N; Sanchez-Nacher L; Torres-Giner S
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films.
    Oliveira G; Gonçalves I; Barra A; Nunes C; Ferreira P; Coimbra MA
    Food Res Int; 2020 Dec; 138(Pt A):109733. PubMed ID: 33292966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coffee silverskin: a possible valuable cosmetic ingredient.
    Rodrigues F; Palmeira-de-Oliveira A; das Neves J; Sarmento B; Amaral MH; Oliveira MB
    Pharm Biol; 2015 Mar; 53(3):386-94. PubMed ID: 25471128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value-Added Products from Coffee Waste: A Review.
    Lee YG; Cho EJ; Maskey S; Nguyen DT; Bae HJ
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starch-Mucilage Composite Films: An Inclusive on Physicochemical and Biological Perspective.
    Tosif MM; Najda A; Bains A; Zawiślak G; Maj G; Chawla P
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seaweed as Basis of Eco-Sustainable Plastic Materials: Focus on Alginate.
    Santana I; Felix M; Bengoechea C
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The wastes of coffee bean processing for utilization in food: a review.
    Arya SS; Venkatram R; More PR; Vijayan P
    J Food Sci Technol; 2022 Feb; 59(2):429-444. PubMed ID: 35185168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in research and development of bioplastic for food packaging.
    Jariyasakoolroj P; Leelaphiwat P; Harnkarnsujarit N
    J Sci Food Agric; 2020 Nov; 100(14):5032-5045. PubMed ID: 30450696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.
    Idris SN; Amelia TSM; Bhubalan K; Lazim AMM; Zakwan NAMA; Jamaluddin MI; Santhanam R; Amirul AA; Vigneswari S; Ramakrishna S
    Environ Res; 2023 Aug; 231(Pt 1):115988. PubMed ID: 37105296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.