These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37447469)

  • 21. Transparent Bioplastic Derived from CO
    Tran TN; Mai BT; Setti C; Athanassiou A
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46667-46677. PubMed ID: 32955861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update.
    Zhao X; Cornish K; Vodovotz Y
    Environ Sci Technol; 2020 Apr; 54(8):4712-4732. PubMed ID: 32202110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Life Cycle Assessment of Compostable Coffee Pods: A US University Based Case Study.
    Kooduvalli K; Vaidya UK; Ozcan S
    Sci Rep; 2020 Jun; 10(1):9158. PubMed ID: 32513993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review.
    Alhanish A; Abu Ghalia M
    Biotechnol Prog; 2021 Nov; 37(6):e3210. PubMed ID: 34499430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Spent Coffee Ground as Fiber Source on Chemical, Rheological and Sensory Properties of Sponge Cake.
    Hussein A; Ali H; Bareh G; Farouk A
    Pak J Biol Sci; 2019 Jan; 22(6):273-282. PubMed ID: 31930850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil.
    Dordevic D; Dordevic S; Abdullah FAA; Mader T; Medimorec N; Tremlova B; Kushkevych I
    Foods; 2023 Jul; 12(13):. PubMed ID: 37444364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass.
    Pacheco A; Evangelista-Osorio A; Muchaypiña-Flores KG; Marzano-Barreda LA; Paredes-Concepción P; Palacin-Baldeón H; Dos Santos MSN; Tres MV; Zabot GL; Olivera-Montenegro L
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities.
    Badr AN; El-Attar MM; Ali HS; Elkhadragy MF; Yehia HM; Farouk A
    Toxins (Basel); 2022 Jan; 14(2):. PubMed ID: 35202136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization.
    Gebreeyessus GD
    Sci Total Environ; 2022 Aug; 833():155113. PubMed ID: 35427619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental and feasibility study of spent coffee grounds upscaling via pyrolysis towards proposing an eco-social innovation circular economy solution.
    Matrapazi VK; Zabaniotou A
    Sci Total Environ; 2020 May; 718():137316. PubMed ID: 32092513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos-Kinetics, Thermodynamics, and Eco-Neurotoxicity.
    Milanković V; Tasić T; Pejčić M; Pašti I; Lazarević-Pašti T
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the Recovery of Phenolic Compounds from Spent Coffee Grounds (SCG) by Environmentally Friendly Extraction Techniques.
    Okur I; Soyler B; Sezer P; Oztop MH; Alpas H
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33503910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Functional Properties of Bioplastic Films Using Lignin Nanoparticles from Oil Palm-Processing Residue.
    Rizal S; Alfatah T; Abdul Khalil HPS; Yahya EB; Abdullah CK; Mistar EM; Ikramullah I; Kurniawan R; Bairwan RD
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges and opportunities of biodegradable plastics: A mini review.
    Rujnić-Sokele M; Pilipović A
    Waste Manag Res; 2017 Feb; 35(2):132-140. PubMed ID: 28064843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polysaccharide-rich fraction of spent coffee grounds as promising biomaterial for films fabrication.
    Batista MJPA; Ávila AF; Franca AS; Oliveira LS
    Carbohydr Polym; 2020 Apr; 233():115851. PubMed ID: 32059902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scientometric Overview of Coffee By-Products and Their Applications.
    Durán-Aranguren DD; Robledo S; Gomez-Restrepo E; Arboleda Valencia JW; Tarazona NA
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes.
    Roy Chong JW; Tan X; Khoo KS; Ng HS; Jonglertjunya W; Yew GY; Show PL
    Environ Res; 2022 Apr; 206():112620. PubMed ID: 34968431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review.
    Mujtaba M; Lipponen J; Ojanen M; Puttonen S; Vaittinen H
    Sci Total Environ; 2022 Dec; 851(Pt 2):158328. PubMed ID: 36037892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union.
    Klingel T; Kremer JI; Gottstein V; Rajcic de Rezende T; Schwarz S; Lachenmeier DW
    Foods; 2020 May; 9(5):. PubMed ID: 32455549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability.
    Adamu Ugya Y; Chen H; Sheng Y; Ajibade FO; Wang Q
    Environ Res; 2023 Nov; 236(Pt 2):116833. PubMed ID: 37543134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.