BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37447604)

  • 1. Degradation Behavior of Biodegradable Man-Made Fibers in Natural Soil and in Compost.
    Borelbach P; Kopitzky R; Dahringer J; Gutmann P
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process.
    Tangnorawich B; Magmee A; Roungpaisan N; Toommee S; Parcharoen Y; Pechyen C
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic?
    Soo XYD; Wang S; Yeo CCJ; Li J; Ni XP; Jiang L; Xue K; Li Z; Fei X; Zhu Q; Loh XJ
    Sci Total Environ; 2022 Feb; 807(Pt 3):151084. PubMed ID: 34678364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation Assessment of Poly (Lactic Acid) Filled with Functionalized Titania Nanoparticles (PLA/TiO
    Luo Y; Lin Z; Guo G
    Nanoscale Res Lett; 2019 Feb; 14(1):56. PubMed ID: 30767099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of Disintegration of Polylactide (PLA)/Poly(Butylene Succinate) (PBS) Blends Containing Talc and Chalk Inorganic Fillers under Industrial Composting Conditions.
    Tolga S; Kabasci S; Duhme M
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradability Assessment of Prickly Pear Waste-Polymer Fibers under Soil Composting.
    Correa-Pacheco ZN; Bautista-Baños S; Benítez-Jiménez JJ; Ortega-Gudiño P; Cisneros-López EO; Hernández-López M
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community.
    Lu J; Qiu Y; Muhmood A; Zhang L; Wang P; Ren L
    Sci Total Environ; 2023 Jun; 875():162356. PubMed ID: 36822427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Abiotic and Biotic Conditions for Degradation Behaviors of Common Biodegradable Products in Stabilized Composts.
    Stegenta-Dąbrowska S; Korendał M; Kochanowicz M; Bondos M; Wiercik P; Medyńska-Juraszek A; Zafiu C
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Polylactic Acid-Polyhydroxyalkanoate-Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization.
    Injorhor P; Trongsatitkul T; Wittayakun J; Ruksakulpiwat C; Ruksakulpiwat Y
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Chain Extending Cross-Linkers on the Disintegration Behavior of Composted PBAT/PLA Blown Films.
    Azevedo JVC; Hausnerova B; Möginger B; Sopik T
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Polybutylene Succinate Content on the Rheological Properties of Polylactic Acid/Polybutylene Succinate Blends and the Characteristics of Their Fibers.
    Choi IS; Kim YK; Hong SH; Seo HJ; Hwang SH; Kim J; Lim SK
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of bio-based film plastics in soil under natural conditions.
    Slezak R; Krzystek L; Puchalski M; Krucińska I; Sitarski A
    Sci Total Environ; 2023 Mar; 866():161401. PubMed ID: 36608826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of petroleum-based and plant-based teabags exposed to environmental soil conditions for one year.
    Mateos-Cárdenas A
    Front Bioeng Biotechnol; 2022; 10():966685. PubMed ID: 36147529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of Polylactic Acid Using Sub-Critical Water for Compost.
    Goto T; Kishita M; Sun Y; Sako T; Okajima I
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33105577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-scale and full-scale industrial composting of biodegradable plastic blends for packaging.
    Chong ZK; Hofmann A; Haye M; Wilson S; Sohoo I; Alassali A; Kuchta K
    Open Res Eur; 2022; 2():101. PubMed ID: 38420136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of turning aeration and the initial carbon/nitrogen ratio on the biodegradation of polylactic acid under controlled conditions.
    Baldera-Moreno Y; Hernández C; Vargas A; Rojas-Palma A; Morales-Vera R; Andler R
    Int J Biol Macromol; 2024 May; 268(Pt 1):131689. PubMed ID: 38642680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of Polybutylene Succinate Biodegradation by
    Kim SH; Cho JY; Cho DH; Jung HJ; Kim BC; Bhatia SK; Park SH; Park K; Yang YH
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications.
    Nazrin A; Sapuan SM; Zuhri MYM; Ilyas RA; Syafiq R; Sherwani SFK
    Front Chem; 2020; 8():213. PubMed ID: 32351928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.