These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37447646)

  • 1. Developing a Novel Terahertz Fabry-Perot Microcavity Biosensor by Incorporating Porous Film for Yeast Sensing.
    Kim HS; Jun SW; Ahn YH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of yeast using terahertz slot antennas.
    Park SJ; Son BH; Choi SJ; Kim HS; Ahn YH
    Opt Express; 2014 Dec; 22(25):30467-72. PubMed ID: 25606992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-sensitivity relative humidity fiber-optic sensor based on an internal-external Fabry-Perot cavity Vernier effect.
    Zhou C; Zhou Q; Wang B; Tian J; Yao Y
    Opt Express; 2021 Apr; 29(8):11854-11868. PubMed ID: 33984958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity-Towards Spectral Characteristics and Strain Sensing Technology.
    Wang Q; Yan D; Cui B; Guo Z
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color-changing refractive index sensor based on Fano-resonant filtering of optical modes in a porous dielectric Fabry-Pérot microcavity.
    Shapturenka P; Stute H; Zakaria NI; DenBaars SP; Gordon MJ
    Opt Express; 2020 Sep; 28(19):28226-28233. PubMed ID: 32988098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Fabry-Perot interferometer operated in the terahertz range based on an effective refractive index control using pitch-variable subwavelength gratings.
    Huang Y; Liu Y; Okatani T; Inomata N; Kanamori Y
    Opt Lett; 2024 Feb; 49(4):951-954. PubMed ID: 38359224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep THz modulation at Fabry-Perot resonances using graphene in periodic microslits.
    Liu X; Jia M; Fan S; Stantchev RI; Chen X; Pickwell-Macpherson E; Sun Y
    Opt Express; 2021 Feb; 29(4):6199-6208. PubMed ID: 33726146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating terahertz guided wave excitation with Fabry-Perot cavity-assisted metasurfaces.
    Luo Y; Ye W; Zhou L; Xie J
    Opt Express; 2024 Jun; 32(12):21216-21229. PubMed ID: 38859481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.
    Jiang L; Guo J; Wu L; Dai X; Xiang Y
    Opt Express; 2015 Nov; 23(24):31181-91. PubMed ID: 26698747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications.
    Hasar UC; Ozbek IY; Oral EA; Karacali T; Efeoglu H
    Opt Express; 2012 Sep; 20(20):22208-23. PubMed ID: 23037369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of antenna-coupled Nb
    Tu X; Jiang C; Xiao P; Kang L; Zhai S; Jiang Z; Feng Su R; Jia X; Zhang L; Chen J; Wu P
    Opt Express; 2018 Apr; 26(7):8990-8997. PubMed ID: 29715857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaussian-optics-based optical modeling and characterization of a Fabry-Perot microcavity for sensing applications.
    Guo D; Lin R; Wang W
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1577-88. PubMed ID: 16134853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal.
    Shirai H; Kishimoto E; Kokuhata T; Miyagawa H; Koshiba S; Nakanishi S; Itoh H; Hangyo M; Kim TG; Tsurumachi N
    Appl Opt; 2009 Dec; 48(36):6934-9. PubMed ID: 20029595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.
    Jung BY; Kim NY; Lee C; Hwangbo CK; Seoul C
    Appl Opt; 2002 Jun; 41(16):3312-8. PubMed ID: 12064418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors.
    Pan C; Wu Q; Zhang Q; Zhao W; Qi J; Yao J; Zhang C; Hill WT; Xu J
    Opt Express; 2017 May; 25(9):9768-9777. PubMed ID: 28468357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field Terahertz Sensing of HeLa Cells and
    Bai Z; Liu Y; Kong R; Nie T; Sun Y; Li H; Sun T; Pandey C; Wang Y; Zhang H; Song Q; Liu G; Kraft M; Zhao W; Wu X; Wen L
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35895-35902. PubMed ID: 32643363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and quantitative detection of DNA hybridization using a simplified Fabry-Perot interferometric biosensor.
    Shi X; Ma Y; Liao Y; Ho HL
    RSC Adv; 2024 Apr; 14(19):13367-13373. PubMed ID: 38660529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiband terahertz metamaterial perfect absorber for microorganisms detection.
    Bhati R; Malik AK
    Sci Rep; 2023 Nov; 13(1):19685. PubMed ID: 37952035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting of the terahertz absorption spectrum based on one-dimensional plastic photonic crystals.
    Li X; Ding D; Yan D; Liu J; Zhang L
    Phys Chem Chem Phys; 2023 Aug; 25(32):21324-21330. PubMed ID: 37528802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.
    Chen M; Fan F; Shen S; Wang X; Chang S
    Appl Opt; 2016 Aug; 55(23):6471-4. PubMed ID: 27534497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.