These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37447672)

  • 1. Driver Injury from Vehicle Side Impacts When Automatic Emergency Braking and Active Seat Belts Are Used.
    Li M; Zhang D; Liu Q; Zhang T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of AEB and active seat belt on driver injury in vehicle-vehicle frontal oblique crash.
    Li P; Lei Y; Liao J; Zhang D; Dong X; Zhang T
    Sci Rep; 2023 Dec; 13(1):22621. PubMed ID: 38114656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pediatric occupant human body model kinematic and kinetic response variation to changes in seating posture in simulated frontal impacts - with and without automatic emergency braking.
    Maheshwari J; Sarfare S; Falciani C; Belwadi A
    Traffic Inj Prev; 2020 Oct; 21(sup1):S49-S53. PubMed ID: 33095067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repositioning forward-leaning passengers by seatbelt pre-pretensioning.
    Mishra E; Mroz K; Lubbe N
    Traffic Inj Prev; 2023; 24(8):716-721. PubMed ID: 37676070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of rear-end crashes involving passenger vehicles with automatic emergency braking.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2019; 20(sup1):S112-S118. PubMed ID: 31381436
    [No Abstract]   [Full Text] [Related]  

  • 6. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes.
    Hu J; Reed MP; Rupp JD; Fischer K; Lange P; Adler A
    Stapp Car Crash J; 2017 Nov; 61():67-100. PubMed ID: 29394436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the lack of restraint with and without belt pretensioning in 40.2 km/h rear impacts.
    Viano DC
    Traffic Inj Prev; 2023; 24(3):196-202. PubMed ID: 36135987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.
    Cicchino JB
    Accid Anal Prev; 2017 Feb; 99(Pt A):142-152. PubMed ID: 27898367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2019; 20(sup1):S171-S176. PubMed ID: 31381447
    [No Abstract]   [Full Text] [Related]  

  • 11. Opportunities and limitations for intersection collision intervention-A study of real world 'left turn across path' accidents.
    Sander U
    Accid Anal Prev; 2017 Feb; 99(Pt A):342-355. PubMed ID: 28043070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China.
    Tan H; Zhao F; Hao H; Liu Z; Amer AA; Babiker H
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32024226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AEB effectiveness evaluation based on car-to-cyclist accident reconstructions using video of drive recorder.
    Zhao Y; Ito D; Mizuno K
    Traffic Inj Prev; 2019; 20(1):100-106. PubMed ID: 30822153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Jun; 115():178-188. PubMed ID: 29604516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U; Lubbe N; Pietzsch S
    Traffic Inj Prev; 2019; 20(sup1):S119-S125. PubMed ID: 31381448
    [No Abstract]   [Full Text] [Related]  

  • 16. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective assessment of the effectiveness of autonomous emergency braking in car-to-cyclist accidents in France.
    Chajmowicz H; Saadé J; Cuny S
    Traffic Inj Prev; 2019; 20(sup2):S20-S25. PubMed ID: 31750740
    [No Abstract]   [Full Text] [Related]  

  • 18. Parameter study for child injury mitigation in near-side impacts through FE simulations.
    Andersson M; Pipkorn B; Lövsund P
    Traffic Inj Prev; 2012; 13(2):182-92. PubMed ID: 22458797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical examination of interdependent relationship between usage of seatbelt restraint system and driver-injury severity of single-vehicle crashes in Thailand using a joint econometric analysis.
    Se C; Champahom T; Jomnonkwao S; Ratanavaraha V
    Traffic Inj Prev; 2023; 24(6):503-510. PubMed ID: 37266974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.