BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37447707)

  • 1. The Effects of mmW and THz Radiation on Dry Eyes: A Finite-Difference Time-Domain (FDTD) Computational Simulation Using XFdtd.
    Foroughimehr N; Vilagosh Z; Yavari A; Wood A
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Base Cell Size Setup on the Finite Difference Time Domain Computational Simulation of Human Cornea Exposed to Millimeter Wave Radiation at Frequencies above 30 GHz.
    Foroughimehr N; Vilagosh Z; Yavari A; Wood A
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental investigation of the safety of terahertz radiation in corneal hydration assessment].
    Safonova TN; Fedorov AA; Surnina ZV; Sikach EI; Ozheredov IA
    Vestn Oftalmol; 2021; 137(3):58-67. PubMed ID: 34156779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Impact of Synchrotron THz Radiation on the Corneal Hydration Using Synchrotron THz-Far Infrared Beamline.
    Foroughimehr N; Vilagosh Z; Yavari A; Wood A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification.
    Iomdina EN; Seliverstov SV; Teplyakova KO; Jani EV; Pozdniakova VV; Polyakova ON; Goltsman GN
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33834684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of millimeter-wave dosimetry in cell culture dishes with finite-difference time-domain technique].
    Zhao J; Lu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):327-30. PubMed ID: 15884546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling and dosimetry of the 35 mm Petri dish under 46 GHz millimeter wave exposure.
    Zhao J; Wei Z
    Bioelectromagnetics; 2005 Sep; 26(6):481-8. PubMed ID: 15931681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of tear interference images in aqueous tear deficiency dry eye before and after punctal occlusion.
    Goto E; Tseng SC
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1897-905. PubMed ID: 12714621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of high-speed, high-resolution thermography to evaluate the tear film layer.
    Mori A; Oguchi Y; Okusawa Y; Ono M; Fujishima H; Tsubota K
    Am J Ophthalmol; 1997 Dec; 124(6):729-35. PubMed ID: 9402818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational phantom study of frozen melanoma imaging at 0.45 terahertz.
    Vilagosh Z; Lajevardipour A; Wood AW
    Bioelectromagnetics; 2019 Feb; 40(2):118-127. PubMed ID: 30699238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation for effects of RF electromagnetic radiation from a mobile handset on eyes model using the finite-difference time-domain method.
    Yang L; Ge M; Guo J; Wang Q; Jiang X; Yan W
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5294-7. PubMed ID: 18003202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tear film break-up on higher order aberrations of the anterior cornea in normal, dry, and post-LASIK eyes.
    Lin YY; Carrel H; Wang IJ; Lin PJ; Hu FR
    J Refract Surg; 2005; 21(5):S525-9. PubMed ID: 16209455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo sensing of rabbit cornea by terahertz technology.
    Ke L; Zhang N; Wu QYS; Gorelik S; Abdelaziem A; Liu Z; Teo EPW; Mehta JS; Liu YC
    J Biophotonics; 2021 Sep; 14(9):e202100130. PubMed ID: 34105892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study of the effect of corneal hydration and its biomechanical properties on the results of photorefractive keratectomy].
    Neroev VV; Iomdina EN; Khandzhyan AT; Khodzhabekyan NV; Sengaeva MD; Ivanova AV; Seliverstov SV; Teplyakova KO; Goltsman GN
    Vestn Oftalmol; 2021; 137(3):68-75. PubMed ID: 34156780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal thickness in trachomatous dry eye.
    Guzey M; Satici A; Karadede S
    Eur J Ophthalmol; 2002; 12(1):18-23. PubMed ID: 11936438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for pachymetry mapping of human precorneal tear film using Pentacam with fluorescein.
    Zhuang H; Zhou X; Xu J
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):156-9. PubMed ID: 19710409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal thickness is reduced in dry eye.
    Liu Z; Pflugfelder SC
    Cornea; 1999 Jul; 18(4):403-7. PubMed ID: 10422850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection against corneal hyperosmolarity with soft-contact-lens wear.
    Kim YH; Nguyen T; Lin MC; Peng CC; Radke CJ
    Prog Retin Eye Res; 2022 Mar; 87():101012. PubMed ID: 34597771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz spectroscopy analysis of human corneal sublayers.
    Ke L; Wu QYS; Zhang N; Yang Z; Teo EPW; Mehta JS; Liu YC
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33899380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thickness of the human precorneal tear film: evidence from reflection spectra.
    King-Smith PE; Fink BA; Fogt N; Nichols KK; Hill RM; Wilson GS
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3348-59. PubMed ID: 11006224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.