These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 37447724)

  • 41. Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system.
    Austerlitz C; Mota HC; Sempau J; Benhabib SM; Campos D; Allison R; DeAlmeida CE; Zhu D; Sibata CH
    Med Phys; 2008 Dec; 35(12):5360-5. PubMed ID: 19175095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.
    Nootz G; Matt S; Kanaev A; Judd KP; Hou W
    Appl Opt; 2017 Aug; 56(22):6065-6072. PubMed ID: 29047796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance evaluation of adaptive optics for atmospheric coherent laser communications.
    Liu C; Chen S; Li X; Xian H
    Opt Express; 2014 Jun; 22(13):15554-63. PubMed ID: 24977813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of temporal fading envelope sequences for the FSOC channel based on atmospheric turbulence optical parameters.
    Yao H; Hao Q; Chen C; Li L; Chang Y; Du S; Liu X; Tong S; Liu Z; Jia S; Jiang H
    Opt Express; 2022 Sep; 30(19):34519-34532. PubMed ID: 36242462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.
    Dikmelik Y; Davidson FM
    Appl Opt; 2005 Aug; 44(23):4946-52. PubMed ID: 16114533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wind and refractive-turbulence sensing using crossed laser beams.
    Wang TI; Clifford SF; Ochs GR
    Appl Opt; 1974 Nov; 13(11):2602-8. PubMed ID: 20134740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of laser beam pointing parameters in the presence of atmospheric turbulence.
    Borah DK; Voelz DG
    Appl Opt; 2007 Aug; 46(23):6010-8. PubMed ID: 17694157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii.
    Wang Y; Basu S
    Opt Lett; 2016 May; 41(10):2334-7. PubMed ID: 27176996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network.
    Zhao Q; Hao S; Wang Y; Wang L; Wan X; Xu C
    Appl Opt; 2018 Dec; 57(35):10152-10158. PubMed ID: 30645219
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.
    Brown DM; Juarez JC; Brown AM
    Appl Opt; 2013 Dec; 52(34):8402-10. PubMed ID: 24513845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks.
    Takenaka H; Toyoshima M; Takayama Y
    Opt Express; 2012 Jul; 20(14):15301-8. PubMed ID: 22772227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of the anisotropy and scaling of the phase structure function of a spatially coherent light beam propagating through convective air turbulence.
    Rasouli S; Mohammadi Razi E; Niemela JJ
    J Opt Soc Am A Opt Image Sci Vis; 2022 Sep; 39(9):1641-1649. PubMed ID: 36215632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Average capacity for optical wireless communication systems over exponentiated Weibull distribution non-Kolmogorov turbulent channels.
    Cheng M; Zhang Y; Gao J; Wang F; Zhao F
    Appl Opt; 2014 Jun; 53(18):4011-7. PubMed ID: 24979434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scintillation analysis of multiple-input single-output underwater optical links.
    Gökçe MC; Baykal Y
    Appl Opt; 2016 Aug; 55(22):6130-6. PubMed ID: 27505399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Terahertz MIMO communication performance analysis in exponentiated Weibull turbulence with pointing errors.
    Cang L; Zhao HK; Liu H; Ji WL; Wan YB; Zhang K; Zheng GX
    Appl Opt; 2021 Aug; 60(24):7314-7325. PubMed ID: 34613019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.
    Ren Y; Dang A; Liu L; Guo H
    Appl Opt; 2012 Oct; 51(30):7246-54. PubMed ID: 23089778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Appl Opt; 2015 Jun; 54(18):5797-804. PubMed ID: 26193032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.
    Laserna JJ; Reyes RF; González R; Tobaria L; Lucena P
    Opt Express; 2009 Jun; 17(12):10265-76. PubMed ID: 19506680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.