These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37447725)

  • 1. Intelligent Diagnostics of Radial Internal Clearance in Ball Bearings with Machine Learning Methods.
    Ambrożkiewicz B; Syta A; Georgiadis A; Gassner A; Litak G; Meier N
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Verification of the Impact of Radial Internal Clearance on a Bearing's Dynamics.
    Ambrożkiewicz B; Syta A; Georgiadis A; Gassner A; Meier N
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Mechanical Properties of "Z" Type Double-Decker Ball Bearings.
    Yu C; Xu L; Yu X
    J Tribol; 2014 Jan; 136(1):111021-111028. PubMed ID: 24086093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm.
    Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification.
    Di Maggio LG
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Mechanical Properties and Fatigue Life of Microturbine Angular Contact Ball Bearings under Eccentric Load Conditions.
    Wang H; Lv H; Luo Z
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. University of Ferrara run-to-failure vibration dataset of self-aligning double-row ball bearings.
    Arpa L; Gabrielli A; Battarra M; Mucchi E
    Data Brief; 2024 Aug; 55():110620. PubMed ID: 39040557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet.
    Lin SL
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks.
    Knežević I; Rackov M; Kanović Ž; Buljević A; Antić A; Tica M; Živković A
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.
    Liu J; Hu Y; Wu B; Wang Y; Xie F
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28524088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Dimensional Mathematical Wear Models of Vibration Generated by Rolling Ball Bearings Made of AISI 52100 Bearing Steel.
    Zmarzły P
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM.
    Ye M; Yan X; Jia M
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34208777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset.
    Zhao C; Sun J; Lin S; Peng Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach to the Quantitative Diagnosis of Rolling Bearings Based on Optimized VMD and Lempel-Ziv Complexity under Varying Conditions.
    Wang H; Yang T; Han Q; Luo Z
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy.
    Lv Z; Han S; Peng L; Yang L; Cao Y
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for Predicting RUL of Rolling Bearings under Different Operating Conditions Based on Transfer Learning and Few Labeled Data.
    Sun W; Wang H; Liu Z; Qu R
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Simulation Analysis and Experimental Study on the Temperature Field of Four Row Rolling Bearings of Rolling Mill under Non-Uniform Load Conditions.
    Sun J; Guo H; Guo X; Ma C; Peng Y
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection method for contact stress distribution of tapered roller bearings.
    Ji Y; Ma X; Zheng H; Huang K; Wang S; Zhang D
    Sci Rep; 2024 May; 14(1):10472. PubMed ID: 38714809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.