These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37447760)
1. Performance Degradation Assessment of Railway Axle Box Bearing Based on Combination of Denoising Features and Time Series Information. Liu Z; Zhang L; Xiao Q; Huang H; Xiong G Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447760 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Contact Fatigue Performance Degradation Trends Based on Multi-Domain Features and Temporal Convolutional Networks. Liu Y; Liu Y; Yang Y Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761615 [TBL] [Abstract][Full Text] [Related]
3. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution. Cheng L; Xia X; Ye L Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201 [TBL] [Abstract][Full Text] [Related]
4. Performance Degradation Prediction Using LSTM with Optimized Parameters. Hu Y; Wei R; Yang Y; Li X; Huang Z; Liu Y; He C; Lu H Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336579 [TBL] [Abstract][Full Text] [Related]
5. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD. Feng Z; Wang Z; Liu X; Li J Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165 [TBL] [Abstract][Full Text] [Related]
6. A Real-Time Fault Early Warning Method for a High-Speed EMU Axle Box Bearing. Liu L; Song D; Geng Z; Zheng Z Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033043 [TBL] [Abstract][Full Text] [Related]
7. A Fault Diagnosis Method of Bogie Axle Box Bearing Based on Spectrum Whitening Demodulation. Zheng Z; Song D; Xu X; Lei L Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327394 [TBL] [Abstract][Full Text] [Related]
8. Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network. Luo H; Bo L; Peng C; Hou D Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878207 [TBL] [Abstract][Full Text] [Related]
9. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis. Hotait H; Chiementin X; Rasolofondraibe L Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610 [TBL] [Abstract][Full Text] [Related]
10. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network. Li H; Huang J; Ji S Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295 [TBL] [Abstract][Full Text] [Related]
11. An Intelligent Multi-Local Model Bearing Fault Diagnosis Method Using Small Sample Fusion. Zhou X; Li A; Han G Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688019 [TBL] [Abstract][Full Text] [Related]
12. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors. Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646 [TBL] [Abstract][Full Text] [Related]
13. Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold. Li J; Wang Z; Liu X; Feng Z Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772183 [TBL] [Abstract][Full Text] [Related]
14. Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method. Kumar PS; Kumaraswamidhas LA; Laha SK ISA Trans; 2021 Jun; 112():386-401. PubMed ID: 33341238 [TBL] [Abstract][Full Text] [Related]
15. Improving rolling bearing online fault diagnostic performance based on multi-dimensional characteristics. Yang C; Wang H; Gao Z; Cui X R Soc Open Sci; 2018 May; 5(5):180066. PubMed ID: 29892444 [TBL] [Abstract][Full Text] [Related]
16. End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis. Zheng J; Liao J; Chen Z Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080947 [TBL] [Abstract][Full Text] [Related]
17. Transfer learning for bearing performance degradation assessment based on deep hierarchical features. Dong S; Wen G; Lei Z; Zhang Z ISA Trans; 2021 Feb; 108():343-355. PubMed ID: 32977933 [TBL] [Abstract][Full Text] [Related]
18. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Yang J; Peng Y; Xie J; Wang P Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338 [TBL] [Abstract][Full Text] [Related]
19. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism. Wu H; Li J; Zhang Q; Tao J; Meng Z ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253 [TBL] [Abstract][Full Text] [Related]
20. EEMD-Based Steady-State Indexes and Their Applications to Condition Monitoring and Fault Diagnosis of Railway Axle Bearings. Yi C; Wang D; Fan W; Tsui KL; Lin J Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]