These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37447779)
21. Remaining Useful Life Prediction Based on Deep Learning: A Survey. Wu F; Wu Q; Tan Y; Xu X Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894245 [TBL] [Abstract][Full Text] [Related]
22. A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint. Zhou J; Qin Y IEEE Trans Neural Netw Learn Syst; 2024 Oct; PP():. PubMed ID: 39423078 [TBL] [Abstract][Full Text] [Related]
23. Extended Relevance Vector Machine-Based Remaining Useful Life Prediction for DC-Link Capacitor in High-Speed Train. Wang X; Jiang B; Ding SX; Lu N; Li Y IEEE Trans Cybern; 2022 Sep; 52(9):9746-9755. PubMed ID: 33382664 [TBL] [Abstract][Full Text] [Related]
24. Particle Filtering Based Remaining Useful Life Prediction for Electromagnetic Coil Insulation. Guo H; Xu A; Wang K; Sun Y; Han X; Hong SH; Yu M Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440838 [TBL] [Abstract][Full Text] [Related]
25. A Digital-Twin Framework for Predicting the Remaining Useful Life of Piezoelectric Vibration Sensors with Sensitivity Degradation Modeling. Fu C; Gao C; Zhang W Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837003 [TBL] [Abstract][Full Text] [Related]
26. Remaining Useful Life Estimation for Engineered Systems Operating under Uncertainty with Causal GraphNets. Mylonas C; Chatzi E Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640645 [TBL] [Abstract][Full Text] [Related]
27. Robustness testing framework for RUL prediction Deep LSTM networks. Sayah M; Guebli D; Al Masry Z; Zerhouni N ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591 [TBL] [Abstract][Full Text] [Related]
28. Adaptive Wiener process-based remaining useful life prediction method considering multi-source variability. Zheng J; Dong Q; Wang X; Zhang Q; Du D Heliyon; 2024 Aug; 10(16):e35925. PubMed ID: 39224300 [TBL] [Abstract][Full Text] [Related]
29. [Research on engine remaining useful life prediction based on oil spectrum analysis and particle filtering]. Sun L; Jia YX; Cai LY; Lin GY; Zhao JS Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2478-82. PubMed ID: 24369656 [TBL] [Abstract][Full Text] [Related]
30. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis. Hotait H; Chiementin X; Rasolofondraibe L Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610 [TBL] [Abstract][Full Text] [Related]
31. An Ensemble Prognostic Method of Francis Turbine Units Using Low-Quality Data under Variable Operating Conditions. Duan R; Liu J; Zhou J; Wang P; Liu W Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062486 [TBL] [Abstract][Full Text] [Related]
32. Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning. Li X; Zhang W; Ma H; Luo Z; Li X IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5480-5491. PubMed ID: 33852404 [TBL] [Abstract][Full Text] [Related]
33. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
34. A Deep-Learning-Based Health Indicator Constructor Using Kullback-Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures. Nguyen TK; Ahmad Z; Kim JM Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632097 [TBL] [Abstract][Full Text] [Related]
35. Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data. Liu Z; Mei W; Zeng X; Yang C; Zhou X Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099811 [TBL] [Abstract][Full Text] [Related]
36. Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory. Gao T; Li Y; Huang X; Wang C Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383918 [TBL] [Abstract][Full Text] [Related]
37. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models. Yan M; Xie L; Muhammad I; Yang X; Liu Y ISA Trans; 2022 Sep; 128(Pt A):290-300. PubMed ID: 34799099 [TBL] [Abstract][Full Text] [Related]
38. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient. Li Q; Yan C; Chen G; Wang H; Li H; Wu L ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005 [TBL] [Abstract][Full Text] [Related]
39. Direct-Drive Electro-Hydraulic Servo Valve Performance Characteristics Prediction Based on Big Data and Neural Networks. Mi J; Yu J; Huang G Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631748 [TBL] [Abstract][Full Text] [Related]
40. Three-Stage Wiener-Process-Based Model for Remaining Useful Life Prediction of a Cutting Tool in High-Speed Milling. Liu W; Yang WA; You Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808259 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]