These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37447807)
21. Monitoring Technology of Abnormal Displacement of BeiDou Power Line Based on Artificial Neural Network. Yang J; Chen Y; Yu J; Zhou Z; Guo Y; Liu X Comput Intell Neurosci; 2022; 2022():7623215. PubMed ID: 36093483 [TBL] [Abstract][Full Text] [Related]
22. Analysis of BDS Fractional Cycle Biases and PPP Ambiguity Resolution. Jiang W; Zhao W; Chen H; Liu X; An X; Chen Q Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683514 [TBL] [Abstract][Full Text] [Related]
23. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835 [TBL] [Abstract][Full Text] [Related]
24. Real-Time Monitoring for BDS Signal-In-Space Anomalies Using Ground Observation Data. Jiang H; Wang H; Wang Z; Yuan Y Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867049 [TBL] [Abstract][Full Text] [Related]
25. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments. Han H; Wang J; Wang J; Tan X Sensors (Basel); 2015 Apr; 15(4):8685-711. PubMed ID: 25875191 [TBL] [Abstract][Full Text] [Related]
26. Overcoming the challenges of BeiDou receiver implementation. Bhuiyan MZ; Söderholm S; Thombre S; Ruotsalainen L; Kuusniemi H Sensors (Basel); 2014 Nov; 14(11):22082-98. PubMed ID: 25421735 [TBL] [Abstract][Full Text] [Related]
27. BeiDou Satellite Positioning Method Based on IoT and Edge Computing. Wang L; Qiu R Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046128 [TBL] [Abstract][Full Text] [Related]
28. A Novel Ionospheric Disturbance Index to Evaluate the Global Effect on BeiDou Navigation Satellite System Signal Caused by the Moderate Geomagnetic Storm on May 12, 2021. He L; Guo C; Yue Q; Zhang S; Qin Z; Zhang J Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772221 [TBL] [Abstract][Full Text] [Related]
29. BeiDou Augmented Navigation from Low Earth Orbit Satellites. Su M; Su X; Zhao Q; Liu J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621112 [TBL] [Abstract][Full Text] [Related]
30. Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination. Xie X; Geng T; Zhao Q; Liu J; Wang B Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28555027 [TBL] [Abstract][Full Text] [Related]
31. Use of NTRIP for optimizing the decoding algorithm for real-time data streams. He Z; Tang W; Yang X; Wang L; Liu J Sensors (Basel); 2014 Oct; 14(10):18878-85. PubMed ID: 25310474 [TBL] [Abstract][Full Text] [Related]
32. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Geng T; Su X; Fang R; Xie X; Zhao Q; Liu J Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999384 [TBL] [Abstract][Full Text] [Related]
33. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals. Tu R; Zhang P; Zhang R; Liu J; Lu X Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596330 [TBL] [Abstract][Full Text] [Related]
34. Real-Time Detection of Orbital Maneuvers Using Epoch-Differenced Carrier Phase Observations and Broadcast Ephemeris Data: A Case Study of the BDS Dataset. Tu R; Zhang R; Fan L; Han J; Zhang P; Lu X Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824205 [TBL] [Abstract][Full Text] [Related]
35. Precise point positioning with the BeiDou navigation satellite system. Li M; Qu L; Zhao Q; Guo J; Su X; Li X Sensors (Basel); 2014 Jan; 14(1):927-43. PubMed ID: 24406856 [TBL] [Abstract][Full Text] [Related]
36. Reducing the Effect of Positioning Errors on Kinematic Raw Doppler (RD) Velocity Estimation Using BDS-2 Precise Point Positioning. Duan S; Sun W; Ouyang C; Chen X; Shi J Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324067 [TBL] [Abstract][Full Text] [Related]
37. An Optimized Method to Detect BDS Satellites' Orbit Maneuvering and Anomalies in Real-Time. Huang G; Qin Z; Zhang Q; Wang L; Yan X; Wang X Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495638 [TBL] [Abstract][Full Text] [Related]
38. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning. Zhou F; Li X; Li W; Chen W; Dong D; Wickert J; Schuh H Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28368346 [TBL] [Abstract][Full Text] [Related]
39. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver. Qian C; Liu H; Zhang M; Shu B; Xu L; Zhang R Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929390 [TBL] [Abstract][Full Text] [Related]
40. Performance Analysis of BDS Medium-Long Baseline RTK Positioning Using an Empirical Troposphere Model. Shu B; Liu H; Xu L; Qian C; Gong X; An X Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29661999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]