These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 37447852)
1. Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms. Soangra R; Smith JA; Rajagopal S; Yedavalli SVR; Anirudh ER Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447852 [TBL] [Abstract][Full Text] [Related]
2. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
3. Prediction of gait intention from pre-movement EEG signals: a feasibility study. Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460 [TBL] [Abstract][Full Text] [Related]
4. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
5. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Zheng M; Yang B; Xie Y Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192 [TBL] [Abstract][Full Text] [Related]
6. EEG-based classification of imagined digits using a recurrent neural network. Mahapatra NC; Bhuyan P J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 37001511 [No Abstract] [Full Text] [Related]
7. Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery. de Brito Guerra TC; Nóbrega T; Morya E; de M Martins A; de Sousa VA Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177482 [TBL] [Abstract][Full Text] [Related]
8. Multiclass Classification of Visual Electroencephalogram Based on Channel Selection, Minimum Norm Estimation Algorithm, and Deep Network Architectures. Mwata-Velu T; Zamora E; Vasquez-Gomez JI; Ruiz-Pinales J; Sossa H Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931751 [TBL] [Abstract][Full Text] [Related]
9. EEG Signal Classification Using Convolutional Neural Networks on Combined Spatial and Temporal Dimensions for BCI Systems. Anwar AM; Eldeib AM Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():434-437. PubMed ID: 33018021 [TBL] [Abstract][Full Text] [Related]
10. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Mattioli F; Porcaro C; Baldassarre G J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443 [No Abstract] [Full Text] [Related]
11. An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding. Nakagome S; Luu TP; He Y; Ravindran AS; Contreras-Vidal JL Sci Rep; 2020 Mar; 10(1):4372. PubMed ID: 32152333 [TBL] [Abstract][Full Text] [Related]
12. An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model. Hashem HA; Abdulazeem Y; Labib LM; Elhosseini MA; Shehata M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991884 [TBL] [Abstract][Full Text] [Related]
13. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056 [TBL] [Abstract][Full Text] [Related]
14. Analyzing the Effectiveness of the Brain-Computer Interface for Task Discerning Based on Machine Learning. Browarczyk J; Kurowski A; Kostek B Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340276 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381 [TBL] [Abstract][Full Text] [Related]
16. Analyzing EEG signals to detect unexpected obstacles during walking. Salazar-Varas R; Costa Á; Iáñez E; Úbeda A; Hortal E; Azorín JM J Neuroeng Rehabil; 2015 Nov; 12():101. PubMed ID: 26577345 [TBL] [Abstract][Full Text] [Related]
17. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests. Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663 [TBL] [Abstract][Full Text] [Related]
18. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
19. Multi-subject classification of Motor Imagery EEG signals using transfer learning in neural networks. Solorzano-Espindola CE; Zamora E; Sossa H Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1006-1009. PubMed ID: 34891458 [TBL] [Abstract][Full Text] [Related]
20. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. Liu X; Lv L; Shen Y; Xiong P; Yang J; Liu J J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33395676 [No Abstract] [Full Text] [Related] [Next] [New Search]