These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37447863)
1. Development and Optimization of a Novel Soft Sensor Modeling Method for Fermentation Process of Wang B; Liu J; Yu A; Wang H Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447863 [TBL] [Abstract][Full Text] [Related]
2. Modeling and Optimization of an Enhanced Soft Sensor for the Fermentation Process of Wang B; Yu A; Wang H; Liu J Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793872 [TBL] [Abstract][Full Text] [Related]
3. A soft sensor model of Zhu X; Liu W; Wang B; Wang W Prep Biochem Biotechnol; 2022; 52(6):618-626. PubMed ID: 34669558 [TBL] [Abstract][Full Text] [Related]
4. Study on Multi-Model Soft Sensor Modeling Method and Its Model Optimization for the Fermentation Process of Wang B; Wang X; He M; Zhu X Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833720 [TBL] [Abstract][Full Text] [Related]
5. Research on soft sensing method of photosynthetic bacteria fermentation process based on ant colony algorithm and least squares support vector machine. Feng X; Hong-Yu T; Bo W; Xiang-Lin Z Prep Biochem Biotechnol; 2023; 53(4):341-352. PubMed ID: 35816458 [TBL] [Abstract][Full Text] [Related]
6. Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling. Brunner V; Siegl M; Geier D; Becker T Biotechnol Bioeng; 2020 Sep; 117(9):2749-2759. PubMed ID: 32510166 [TBL] [Abstract][Full Text] [Related]
7. Accurate and cost-effective prediction of HBsAg titer in industrial scale fermentation process of recombinant Pichia pastoris by using neural network based soft sensor. Hosseini SN; Javidanbardan A; Khatami M Biotechnol Appl Biochem; 2019 Jul; 66(4):681-689. PubMed ID: 31169323 [TBL] [Abstract][Full Text] [Related]
8. An online soft sensor method for biochemical reaction process based on JS-ISSA-XGBoost. Zhang L; Wang B; Shen Y; Nie Y BMC Biotechnol; 2023 Nov; 23(1):49. PubMed ID: 37940925 [TBL] [Abstract][Full Text] [Related]
9. Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM. Wang B; Shahzad M; Zhu X; Ur Rehman K; Ashfaq M; Abubakar M Sci Rep; 2020 Jul; 10(1):11630. PubMed ID: 32669628 [TBL] [Abstract][Full Text] [Related]
10. Codon pair optimization (CPO): a software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris. Huang Y; Lin T; Lu L; Cai F; Lin J; Jiang YE; Lin Y Microb Cell Fact; 2021 Nov; 20(1):209. PubMed ID: 34736476 [TBL] [Abstract][Full Text] [Related]
11. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Yang Z; Zhang Z Biotechnol Adv; 2018; 36(1):182-195. PubMed ID: 29129652 [TBL] [Abstract][Full Text] [Related]
12. Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg. Beiroti A; Aghasadeghi MR; Hosseini SN; Norouzian D Prep Biochem Biotechnol; 2019; 49(4):352-359. PubMed ID: 30707051 [TBL] [Abstract][Full Text] [Related]
13. Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Noseda DG; Recúpero MN; Blasco M; Ortiz GE; Galvagno MA Protein Expr Purif; 2013 Dec; 92(2):235-44. PubMed ID: 24141135 [TBL] [Abstract][Full Text] [Related]
14. Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence. Brunner V; Klöckner L; Kerpes R; Geier DU; Becker T Anal Bioanal Chem; 2020 Apr; 412(9):2165-2175. PubMed ID: 31286180 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. Shang T; Si D; Zhang D; Liu X; Zhao L; Hu C; Fu Y; Zhang R BMC Biotechnol; 2017 Jun; 17(1):55. PubMed ID: 28633643 [TBL] [Abstract][Full Text] [Related]
16. Design of methanol Feed control in Pichia pastoris fermentations based upon a growth model. Zhang W; Smith LA; Plantz BA; Schlegel VL; Meagher MM Biotechnol Prog; 2002; 18(6):1392-9. PubMed ID: 12467476 [TBL] [Abstract][Full Text] [Related]
17. Microscale Perfusion-Based Cultivation for Pichia pastoris Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Totaro D; Radoman B; Schmelzer B; Rothbauer M; Steiger MG; Mayr T; Sauer M; Ertl P; Mattanovich D Biotechnol J; 2021 Mar; 16(3):e2000215. PubMed ID: 32935449 [TBL] [Abstract][Full Text] [Related]
18. Soft-sensing method based on FDLS-SVM in marine alkaline protease fermentation process. Wang B; Yu M; Zhu X; Jiang Z Prep Biochem Biotechnol; 2019; 49(8):783-789. PubMed ID: 31132010 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the fermentation parameters for the production of Mao PW; Li LD; Wang YL; Bai XH; Zhou XW Prep Biochem Biotechnol; 2020; 50(4):357-364. PubMed ID: 31846385 [TBL] [Abstract][Full Text] [Related]
20. Hypersecretory production of glucose oxidase in Pichia pastoris through combinatorial engineering of protein properties, synthesis, and secretion. Zhou H; Zhang W; Qian J Biotechnol Bioeng; 2024 Feb; 121(2):735-748. PubMed ID: 38037762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]