These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37447919)
61. Convolutional Recurrent Neural Network-Based Event Detection in Tunnels Using Multiple Microphones. Kim NK; Jeon KM; Kim HK Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31208007 [TBL] [Abstract][Full Text] [Related]
62. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder-Decoder Network. Islam MMM; Kim JM Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31574963 [TBL] [Abstract][Full Text] [Related]
63. Human-computer interaction based health diagnostics using ResNet34 for tongue image classification. Zhuang Q; Gan S; Zhang L Comput Methods Programs Biomed; 2022 Nov; 226():107096. PubMed ID: 36191350 [TBL] [Abstract][Full Text] [Related]
64. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
65. Deep learning approach to peripheral leukocyte recognition. Wang Q; Bi S; Sun M; Wang Y; Wang D; Yang S PLoS One; 2019; 14(6):e0218808. PubMed ID: 31237896 [TBL] [Abstract][Full Text] [Related]
66. A comparative study on image-based snake identification using machine learning. Rajabizadeh M; Rezghi M Sci Rep; 2021 Sep; 11(1):19142. PubMed ID: 34580318 [TBL] [Abstract][Full Text] [Related]
67. Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model. Luo Z; Yu H; Zhang Y Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784403 [TBL] [Abstract][Full Text] [Related]
68. Brain Magnetic Resonance Imaging Classification Using Deep Learning Architectures with Gender and Age. Wahlang I; Maji AK; Saha G; Chakrabarti P; Jasinski M; Leonowicz Z; Jasinska E Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270913 [TBL] [Abstract][Full Text] [Related]
70. Image Semantic Recognition and Segmentation Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network. Tang J; Wang L; Huang J; Shi A; Xu L Comput Intell Neurosci; 2022; 2022():2439371. PubMed ID: 36210987 [TBL] [Abstract][Full Text] [Related]
71. Construction and Application Research of the Visual Image Obstacle Type Recognition Model Based on the Computer-Expanded Convolutional Neural Network. Xian Y Comput Intell Neurosci; 2022; 2022():3123448. PubMed ID: 36188710 [TBL] [Abstract][Full Text] [Related]
72. Deep Learning Assisted Neonatal Cry Classification K A; Vincent PMDR; Srinivasan K; Chang CY Front Public Health; 2021; 9():670352. PubMed ID: 34178926 [TBL] [Abstract][Full Text] [Related]
73. Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks. Nizar MHA; Chan CK; Khalil A; Yusof AKM; Lai KW Curr Med Imaging; 2020; 16(5):584-591. PubMed ID: 32484093 [TBL] [Abstract][Full Text] [Related]
74. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732 [TBL] [Abstract][Full Text] [Related]
75. A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning. Tong C; Liang B; Li J; Zheng Z J Med Syst; 2018 Nov; 42(12):249. PubMed ID: 30390162 [TBL] [Abstract][Full Text] [Related]
76. BC-DUnet-based segmentation of fine cracks in bridges under a complex background. Liu T; Zhang L; Zhou G; Cai W; Cai C; Li L PLoS One; 2022; 17(3):e0265258. PubMed ID: 35290410 [TBL] [Abstract][Full Text] [Related]
77. Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module. Qiao W; Liu Q; Wu X; Ma B; Li G Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919128 [TBL] [Abstract][Full Text] [Related]
78. Automatic classification of cells in microscopic fecal images using convolutional neural networks. Du X; Liu L; Wang X; Ni G; Zhang J; Hao R; Liu J; Liu Y Biosci Rep; 2019 Apr; 39(4):. PubMed ID: 30872411 [TBL] [Abstract][Full Text] [Related]
79. A New Method of Deep Convolutional Neural Network Image Classification Based on Knowledge Transfer in Small Label Sample Environment. Kong Y; Ma X; Wen C Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161644 [TBL] [Abstract][Full Text] [Related]
80. Classification of precancerous lesions based on fusion of multiple hierarchical features. Zhou H; Liu Z; Li T; Chen Y; Huang W; Zhang Z Comput Methods Programs Biomed; 2023 Feb; 229():107301. PubMed ID: 36516661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]