These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37447996)

  • 41. Evaluating the persistence of laundered semen stains on fabric using a forensic light source system, prostate-specific antigen Semiquant test and DNA recovery-profiling.
    Karadayi S; Moshfeghi E; Arasoglu T; Karadayi B
    Med Sci Law; 2020 Apr; 60(2):122-130. PubMed ID: 32098574
    [No Abstract]   [Full Text] [Related]  

  • 42. Evaluating the use of hypoxia sensitive markers for body fluid stain age prediction.
    Asaghiar F; Williams GA
    Sci Justice; 2020 Nov; 60(6):547-554. PubMed ID: 33077038
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct-STR typing from presumptively-tested and untreated body fluids.
    Thanakiatkrai P; Raham K; Pradutkanchana J; Sotthibandhu S; Kitpipit T
    Forensic Sci Int Genet; 2017 Sep; 30():1-9. PubMed ID: 28605649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples.
    Mayes C; Houston R; Seashols-Williams S; LaRue B; Hughes-Stamm S
    Leg Med (Tokyo); 2019 May; 38():45-50. PubMed ID: 30959396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Old meets new: Comparative examination of conventional and innovative RNA-based methods for body fluid identification of laundered seminal fluid stains after modular extraction of DNA and RNA.
    Kulstein G; Schacker U; Wiegand P
    Forensic Sci Int Genet; 2018 Sep; 36():130-140. PubMed ID: 29990825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of mRNA-based approach for identification of saliva and semen.
    Sakurada K; Ikegaya H; Fukushima H; Akutsu T; Watanabe K; Yoshino M
    Leg Med (Tokyo); 2009 May; 11(3):125-8. PubMed ID: 19036626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methylation-Based Age Prediction Using Pyrosequencing Platform from Seminal Stains in Han Chinese Males.
    Li L; Song F; Lang M; Hou J; Wang Z; Prinz M; Hou Y
    J Forensic Sci; 2020 Mar; 65(2):610-619. PubMed ID: 31498434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Short UV luminescence for forensic applications: design of a real-time observation system for detection of latent fingerprints and body fluids.
    Ben Yosef N; Almog J; Frank A; Springer E; Cantu AA
    J Forensic Sci; 1998 Mar; 43(2):299-304. PubMed ID: 9544537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forensic applications of DNA typing: part 2: collection and preservation of DNA evidence.
    Lee HC; Ladd C; Scherczinger CA; Bourke MT
    Am J Forensic Med Pathol; 1998 Mar; 19(1):10-8. PubMed ID: 9539385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forensic applications of genetic polymorphisms detected in human body fluids (urine, semen and blood).
    Kishi K; Yasuda T
    Forensic Sci Int; 1996 Jun; 80(1-2):89-97. PubMed ID: 8690326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An mRNA and DNA co-isolation method for forensic casework samples.
    Alvarez M; Juusola J; Ballantyne J
    Anal Biochem; 2004 Dec; 335(2):289-98. PubMed ID: 15556568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of indirect transfer mechanisms of semen under varying test conditions.
    Finnis J; Davidson G; Alexander K; Lewis J; Boyce M; Kennedy F; Casey D; Clayson N; Fraser I; Murphy C; Hargreaves C; Stevenson N; Doole S; Rogers C
    Sci Justice; 2024 Jan; 64(1):95-103. PubMed ID: 38182318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate.
    Kistenev YV; Borisov AV; Samarinova AA; Colón-Rodríguez S; Lednev IK
    Sci Rep; 2023 Apr; 13(1):5384. PubMed ID: 37012280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting and collecting traces of semen and blood from outdoor crime scenes using crime scene dogs and presumptive tests.
    Skalleberg AG; Bouzga MM
    Forensic Sci Int; 2016 Jul; 264():146-52. PubMed ID: 27174517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of laser and high-intensity quartz arc tubes in the detection of body secretions.
    Auvdel MJ
    J Forensic Sci; 1988 Jul; 33(4):929-45. PubMed ID: 3171509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Messenger RNA profiling for forensic body fluid identification: research and applications.
    Wang Z; Zhang SH; Di Z; Zhao SM; Li CT
    Fa Yi Xue Za Zhi; 2013 Oct; 29(5):368-74. PubMed ID: 24466779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of human mRNA transcripts over time as an indicator of the time since deposition (TsD) in biological crime scene traces.
    Salzmann AP; Russo G; Kreutzer S; Haas C
    Forensic Sci Int Genet; 2021 Jul; 53():102524. PubMed ID: 34015741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic STR analysis of old post-vasectomy seminal fluid stains to examine evidence stored for 16 years.
    Romero JK; Bittencourt EA; Soares-Vieira JA; Pacheco AC; Soares AL; Iwamura ESM
    Sci Rep; 2021 Apr; 11(1):8918. PubMed ID: 33903633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth.
    Sherier AJ; Kieser RE; Novroski NMM; Wendt FR; King JL; Woerner AE; Ambers A; Garofano P; Budowle B
    Int J Legal Med; 2020 Jan; 134(1):45-54. PubMed ID: 31165261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Advances in identification of semen stains].
    Fan GY; Zhao GS; Mo YN
    Zhonghua Nan Ke Xue; 2010 Aug; 16(8):735-40. PubMed ID: 21090352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.