These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37448033)
1. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film. Dai X; Wu L; Liu K; Ma F; Yang Y; Yu L; Sun J; Lu M Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448033 [TBL] [Abstract][Full Text] [Related]
2. Black silicon Schottky photodetector in sub-bandgap near-infrared regime. Hu F; Dai XY; Zhou ZQ; Kong XY; Sun SL; Zhang RJ; Wang SY; Lu M; Sun J Opt Express; 2019 Feb; 27(3):3161-3168. PubMed ID: 30732341 [TBL] [Abstract][Full Text] [Related]
4. Sub-bandgap near-infrared photovoltaic response in Au/Al Dai X; Wu L; Yu L; Yu Z; Ma F; Zhang Y; Yang Y; Sun J; Lu M Discov Nano; 2023 Mar; 18(1):33. PubMed ID: 36881340 [TBL] [Abstract][Full Text] [Related]
5. Infrared Photodetector Based on the Photothermionic Effect of Graphene-Nanowall/Silicon Heterojunction. Liu X; Zhou Q; Luo S; Du H; Cao Z; Peng X; Feng W; Shen J; Wei D ACS Appl Mater Interfaces; 2019 May; 11(19):17663-17669. PubMed ID: 31007009 [TBL] [Abstract][Full Text] [Related]
7. Near-infrared detection based on the excitation of hot electrons in Au/Si microcone array. Zhang Z; Yan J; You J; Zhu Y; Wang L; Zhong Z; Jiang Z Nanotechnology; 2024 Jul; 35(40):. PubMed ID: 38991504 [TBL] [Abstract][Full Text] [Related]
8. A two-dimensional PtSe Zhu Q; Wei S; Sun J; Sun Y; Xu M Nanoscale; 2024 Oct; 16(42):19865-19872. PubMed ID: 39376165 [TBL] [Abstract][Full Text] [Related]
9. High Detectivity Graphene-Silicon Heterojunction Photodetector. Li X; Zhu M; Du M; Lv Z; Zhang L; Li Y; Yang Y; Yang T; Li X; Wang K; Zhu H; Fang Y Small; 2016 Feb; 12(5):595-601. PubMed ID: 26643577 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure. Li X; Deng Z; Ma Z; Jiang Y; Du C; Jia H; Wang W; Chen H Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746318 [TBL] [Abstract][Full Text] [Related]
11. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Alavirad M; Olivieri A; Roy L; Berini P Opt Express; 2016 Oct; 24(20):22544-22554. PubMed ID: 27828325 [TBL] [Abstract][Full Text] [Related]
12. Thickness effect of 2D PdSe Hu Y; Zhu Q; Sun J; Sun Y; Hanagata N; Xu M Nanotechnology; 2023 Sep; 34(49):. PubMed ID: 37666240 [TBL] [Abstract][Full Text] [Related]
13. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. Zeng LH; Wang MZ; Hu H; Nie B; Yu YQ; Wu CY; Wang L; Hu JG; Xie C; Liang FX; Luo LB ACS Appl Mater Interfaces; 2013 Oct; 5(19):9362-6. PubMed ID: 24040753 [TBL] [Abstract][Full Text] [Related]
14. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Qi Z; Zhai Y; Wen L; Wang Q; Chen Q; Iqbal S; Chen G; Xu J; Tu Y Nanotechnology; 2017 May; 28(27):275202. PubMed ID: 28531089 [TBL] [Abstract][Full Text] [Related]
15. High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling. Cong J; Khan A; Hang P; Cheng L; Yang D; Yu X Nanotechnology; 2022 Sep; 33(50):. PubMed ID: 36044876 [TBL] [Abstract][Full Text] [Related]
17. Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (camphor)/Si-nanowire Schottky junction. Chaliyawala H; Aggarwal N; Purohit Z; Patel R; Gupta G; Jaffre A; Le Gall S; Ray A; Mukhopadhyay I Nanotechnology; 2020 May; 31(22):225208. PubMed ID: 32059203 [TBL] [Abstract][Full Text] [Related]
18. Schottky infrared detectors with optically tunable barriers beyond the internal photoemission limit. Fu J; Guo Z; Nie C; Sun F; Li G; Feng S; Wei X Innovation (Camb); 2024 May; 5(3):100600. PubMed ID: 38510070 [TBL] [Abstract][Full Text] [Related]
19. Graphene-Silicon Device for Visible and Infrared Photodetection. Pelella A; Grillo A; Faella E; Luongo G; Askari MB; Di Bartolomeo A ACS Appl Mater Interfaces; 2021 Oct; 13(40):47895-47903. PubMed ID: 34581561 [TBL] [Abstract][Full Text] [Related]
20. Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect. Dai Y; Wang X; Peng W; Zou H; Yu R; Ding Y; Wu C; Wang ZL ACS Nano; 2017 Jul; 11(7):7118-7125. PubMed ID: 28692283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]