These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37448088)

  • 1. Eye-Gaze Controlled Wheelchair Based on Deep Learning.
    Xu J; Huang Z; Liu L; Li X; Wei K
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Eye-Controlled Electric Wheelchair Based on Estimating Visual Intentions Using One-Dimensional Convolutional Neural Network and Long Short-Term Memory.
    Higa S; Yamada K; Kamisato S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decentralized Motion Control for Omnidirectional Wheelchair Tracking Error Elimination Using PD-Fuzzy-P and GA-PID Controllers.
    Batayneh W; AbuRmaileh Y
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Intelligent and Low-Cost Eye-Tracking System for Motorized Wheelchair Control.
    Dahmani M; Chowdhury MEH; Khandakar A; Rahman T; Al-Jayyousi K; Hefny A; Kiranyaz S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32679779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording gaze trajectory of wheelchair users by a spherical camera.
    Li S; Fujiura T; Nakanishi I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():929-934. PubMed ID: 28813940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on a smart wheelchair system using a combination of stereoscopic and spherical vision.
    Nguyen JS; Su SW; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4597-600. PubMed ID: 24110758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel design and implementation of wheelchair navigation system using Leap Motion sensor.
    Fereidouni S; Sheikh Hassani M; Talebi A; Rezaie AH
    Disabil Rehabil Assist Technol; 2022 May; 17(4):442-448. PubMed ID: 32633585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between joystick- and gaze-controlled electric wheelchair during narrow doorway crossing: Feasibility study and movement analysis.
    Letaief M; Rezzoug N; Gorce P
    Assist Technol; 2021 Jan; 33(1):26-37. PubMed ID: 30945980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Architecture to Assist With Steering a Powered Wheelchair.
    Haddad MJ; Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2987-2994. PubMed ID: 33055019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Braking electric-powered wheelchairs: effect of braking method, seatbelt, and legrests.
    Cooper RA; Dvorznak MJ; O'Connor TJ; Boninger ML; Jones DK
    Arch Phys Med Rehabil; 1998 Oct; 79(10):1244-9. PubMed ID: 9779678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent Control Wheelchair Using a New Visual Joystick.
    Rabhi Y; Mrabet M; Fnaiech F
    J Healthc Eng; 2018; 2018():6083565. PubMed ID: 29599953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Object Detection, Localisation and Tracking for Smart Wheelchair Healthcare Mobility.
    Lecrosnier L; Khemmar R; Ragot N; Decoux B; Rossi R; Kefi N; Ertaud JY
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33374389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Myoelectric Potential Estimation Method for Wheelchair Operation.
    Aihara S; Shibata R; Mizukami R; Sakai T; Shionoya A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheelchair Neuro Fuzzy Control and Tracking System Based on Voice Recognition.
    Abdulghani MM; Al-Aubidy KM; Ali MM; Hamarsheh QJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair driving strategies: A comparison between standard joystick and gaze-based control.
    Maule L; Zanetti M; Luchetti A; Tomasin P; Dallapiccola M; Covre N; Guandalini G; De Cecco M
    Assist Technol; 2023 Mar; 35(2):180-192. PubMed ID: 34871532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an exercise-enabling control interface for powered wheelchair users: a feasibility study with Duchenne muscular dystrophy.
    Lobo-Prat J; Enkaoua A; Rodríguez-Fernández A; Sharifrazi N; Medina-Cantillo J; Font-Llagunes JM; Torras C; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2020 Oct; 17(1):142. PubMed ID: 33115472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.