These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37448099)
21. Optimizing UAV spray parameters to improve precise control of tobacco pests at different growth stages. Shi X; Du Y; Liu X; Liu C; Hou Q; Chen L; Yong R; Ma J; Yang D; Yuan H; Guo J; Liu P; Yan X Pest Manag Sci; 2024 Nov; 80(11):5809-5819. PubMed ID: 39007292 [TBL] [Abstract][Full Text] [Related]
22. Improving UASS pesticide application: optimizing and validating drift and deposition simulations. Tang Q; Zhang R; Chen L; Zhang P; Li L; Xu G; Yi T; Hewitt A Pest Manag Sci; 2024 Sep; ():. PubMed ID: 39287140 [TBL] [Abstract][Full Text] [Related]
23. Spray losses study of two pesticides by UASS in integrated rice-crayfish farming system and acute toxicity evaluation on Liu Y; Wang G; Li Y; Zhang Z; Pang S; He X; Song J Front Plant Sci; 2023; 14():1212818. PubMed ID: 37767301 [TBL] [Abstract][Full Text] [Related]
24. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy. Jiang Y; Yang Z; Xu X; Shen D; Jiang T; Xie B; Duan J Front Plant Sci; 2023; 14():1079703. PubMed ID: 36743480 [TBL] [Abstract][Full Text] [Related]
25. A comparison of two ultra-low-volume spray nozzle systems by using a multiple swath scenario for the aerial application of fenthion against adult mosquitoes. Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA J Am Mosq Control Assoc; 2004 Mar; 20(1):36-44. PubMed ID: 15088703 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
27. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Pandiselvam R; Daliyamol ; Imran S S; Hegde V; Sujithra M; Prathibha PS; Prathibha VH; Hebbar KB Heliyon; 2024 Oct; 10(19):e38569. PubMed ID: 39397987 [TBL] [Abstract][Full Text] [Related]
30. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Chen P; Douzals JP; Lan Y; Cotteux E; Delpuech X; Pouxviel G; Zhan Y Front Plant Sci; 2022; 13():870956. PubMed ID: 36003827 [TBL] [Abstract][Full Text] [Related]
31. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814 [TBL] [Abstract][Full Text] [Related]
32. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Gao S; Wang G; Zhou Y; Wang M; Yang D; Yuan H; Yan X Pest Manag Sci; 2019 Oct; 75(10):2592-2597. PubMed ID: 30927304 [TBL] [Abstract][Full Text] [Related]
33. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
34. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
35. Droplet deposition and pest control efficacy on pine trees from aerial application. Yao W; Guo S; Wang J; Chen C; Yu F; Li X; Xu T; Lan Y Pest Manag Sci; 2022 Aug; 78(8):3324-3336. PubMed ID: 35491531 [TBL] [Abstract][Full Text] [Related]
36. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
37. Model and design of real-time control system for aerial variable spray. Liu Y; Ru Y; Duan L; Qu R PLoS One; 2020; 15(7):e0235700. PubMed ID: 32701965 [TBL] [Abstract][Full Text] [Related]
38. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of the deposition and distribution of spray droplets in citrus orchards by plant protection drones. Yan Y; Lan Y; Wang G; Hussain M; Wang H; Yu X; Shan C; Wang B; Song C Front Plant Sci; 2023; 14():1303669. PubMed ID: 38093990 [TBL] [Abstract][Full Text] [Related]
40. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements. Maertens W; Nuyttens D; Sonck B Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]