BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37448544)

  • 21. Joint Multimodal Deep Learning-based Automatic Segmentation of Indocyanine Green Angiography and OCT Images for Assessment of Polypoidal Choroidal Vasculopathy Biomarkers.
    Loo J; Teo KYC; Vyas CH; Jordan-Yu JMN; Juhari AB; Jaffe GJ; Cheung CMG; Farsiu S
    Ophthalmol Sci; 2023 Sep; 3(3):100292. PubMed ID: 37025946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Choroid automatic segmentation and thickness quantification on swept-source optical coherence tomography images of highly myopic patients.
    Li M; Zhou J; Chen Q; Zou H; He J; Zhu J; Chen X; Shi F; Fan Y; Xu X
    Ann Transl Med; 2022 Jun; 10(11):620. PubMed ID: 35813325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IMPACT OF PENETRATION AND IMAGE ANALYSIS IN OPTICAL COHERENCE TOMOGRAPHY ON THE MEASUREMENT OF CHOROIDAL VASCULARITY PARAMETERS.
    Chen S; Zheng G; Yu X; Jiang Y; Lin Z; Lin G; Chen W; Shen M; Lu F
    Retina; 2022 Oct; 42(10):1965-1974. PubMed ID: 36129268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic Anisotropic Diffusion Filtering and Graph-search Segmentation of Macular Spectral-domain Optical Coherence Tomographic (SD-OCT) Images.
    Usha A; Shajil N; Sasikala M
    Curr Med Imaging Rev; 2019; 15(3):308-318. PubMed ID: 31989882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Choroidal Layer Analysis in OCT images via Ambiguous Boundary-aware Attention.
    Yan Q; Ma Y; Wu W; Mou L; Huang W; Cheng J; Zhao Y
    Comput Biol Med; 2024 Jun; 175():108386. PubMed ID: 38691915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images.
    Chen Q; Niu S; Yuan S; Fan W; Liu Q
    Med Phys; 2016 Apr; 43(4):1649. PubMed ID: 27036564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.
    Choy KC; Li G; Stamer WD; Farsiu S
    Exp Eye Res; 2022 Jan; 214():108844. PubMed ID: 34793828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choroidal layer segmentation in OCT images by a boundary enhancement network.
    Wu W; Gong Y; Hao H; Zhang J; Su P; Yan Q; Ma Y; Zhao Y
    Front Cell Dev Biol; 2022; 10():1060241. PubMed ID: 36438560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Choroidal Thickness Measurements Using Semiautomated and Manual Segmentation Methods.
    Zhao M; Alonso-Caneiro D; Lee R; Cheong AMY; Yu WY; Wong HY; Lam AKC
    Optom Vis Sci; 2020 Feb; 97(2):121-127. PubMed ID: 32011585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts.
    Danesh H; Kafieh R; Rabbani H; Hajizadeh F
    Comput Math Methods Med; 2014; 2014():479268. PubMed ID: 24672579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images.
    Chen Q; Niu S; Fang W; Shuai Y; Fan W; Yuan S; Liu Q
    Comput Methods Programs Biomed; 2018 May; 158():161-171. PubMed ID: 29544782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model.
    Kajić V; Esmaeelpour M; Považay B; Marshall D; Rosin PL; Drexler W
    Biomed Opt Express; 2012 Jan; 3(1):86-103. PubMed ID: 22254171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Artificial Intelligence and Deep Learning for Choroid Segmentation in Myopia.
    Chen HJ; Huang YL; Tse SL; Hsia WP; Hsiao CH; Wang Y; Chang CJ
    Transl Vis Sci Technol; 2022 Feb; 11(2):38. PubMed ID: 35212716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Estimation of Choroidal Thickness in Optical Coherence Tomography Images with Convolutional Neural Networks.
    Rong Y; Jiang Z; Wu W; Chen Q; Wei C; Fan Z; Chen H
    J Clin Med; 2022 Jun; 11(11):. PubMed ID: 35683590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning.
    Guo M; Zhao M; Cheong AMY; Dai H; Lam AKC; Zhou Y
    Vis Comput Ind Biomed Art; 2019 Dec; 2(1):21. PubMed ID: 32240395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT.
    Zhou H; Chu Z; Zhang Q; Dai Y; Gregori G; Rosenfeld PJ; Wang RK
    Biomed Opt Express; 2018 Dec; 9(12):6067-6080. PubMed ID: 31065413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images.
    Dodo BI; Li Y; Eltayef K; Liu X
    J Med Syst; 2019 Nov; 43(12):336. PubMed ID: 31724076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.