These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 37448756)
1. Radiofrequency-Based Chondroplasty Creates a Precise Area of Targeted Chondrocyte Death With Minimal Necrosis Outside the Target Zone: A Systematic Review. Jackson GR; Salazar LM; McCormick JR; Gopinatth V; Hodakowski A; Mowers CC; Dasari S; Fortier LM; Kaplan DJ; Khan ZA; Mameri ES; Knapik DM; Chahla J; Verma NN Arthrosc Sports Med Rehabil; 2023 Aug; 5(4):100754. PubMed ID: 37448756 [TBL] [Abstract][Full Text] [Related]
2. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Rodriguez E; Markel MD Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190 [TBL] [Abstract][Full Text] [Related]
3. Histopomorphic evaluation of radiofrequency mediated débridement chondroplasty. Ganguly K; McRury ID; Goodwin PM; Morgan RE; Augé Ii WK Open Orthop J; 2010 Jun; 4():211-20. PubMed ID: 20721322 [TBL] [Abstract][Full Text] [Related]
4. Radiofrequency Chondroplasty of the Knee Yields Excellent Clinical Outcomes and Minimal Complications: A Systematic Review. Tuthill T; Jackson GR; Schundler SF; Lee JS; Allahabadi S; Salazar LM; McCormick JR; Jawanda H; Batra A; Khan ZA; Mameri ES; Chahla J; Verma NN Arthrosc Sports Med Rehabil; 2023 Aug; 5(4):100749. PubMed ID: 37520504 [TBL] [Abstract][Full Text] [Related]
5. Lavage solution temperature influences depth of chondrocyte death and surface contouring during thermal chondroplasty with temperature-controlled monopolar radiofrequency energy. Lu Y; Edwards RB; Nho S; Cole BJ; Markel MD Am J Sports Med; 2002; 30(5):667-73. PubMed ID: 12238999 [TBL] [Abstract][Full Text] [Related]
6. Thermal chondroplasty with bipolar and monopolar radiofrequency energy: effect of treatment time on chondrocyte death and surface contouring. Lu Y; Edwards RB; Nho S; Heiner JP; Cole BJ; Markel MD Arthroscopy; 2002 Sep; 18(7):779-88. PubMed ID: 12209437 [TBL] [Abstract][Full Text] [Related]
7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
8. Arthroscopic evaluation of radiofrequency chondroplasty of the knee. Voloshin I; Morse KR; Allred CD; Bissell SA; Maloney MD; DeHaven KE Am J Sports Med; 2007 Oct; 35(10):1702-7. PubMed ID: 17644661 [TBL] [Abstract][Full Text] [Related]
9. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. Lu Y; Edwards RB; Cole BJ; Markel MD Am J Sports Med; 2001; 29(1):42-9. PubMed ID: 11206255 [TBL] [Abstract][Full Text] [Related]
10. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Huang Y; Zhang Y; Ding X; Liu S; Sun T Chin Med J (Engl); 2014; 127(22):3881-6. PubMed ID: 25421185 [TBL] [Abstract][Full Text] [Related]
12. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Lu Y; Hayashi K; Hecht P; Fanton GS; Thabit G; Cooley AJ; Edwards RB; Markel MD Arthroscopy; 2000; 16(5):527-36. PubMed ID: 10882450 [TBL] [Abstract][Full Text] [Related]
13. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Barber FA; Iwasko NG Arthroscopy; 2006 Dec; 22(12):1312-7. PubMed ID: 17157730 [TBL] [Abstract][Full Text] [Related]
14. Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: an in vitro study. Amiel D; Ball ST; Tasto JP Arthroscopy; 2004 May; 20(5):503-10. PubMed ID: 15122140 [TBL] [Abstract][Full Text] [Related]
15. Thermal chondroplasty of chondromalacic human cartilage. An ex vivo comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Nho S; Cole BJ; Markel MD Am J Sports Med; 2002; 30(1):90-7. PubMed ID: 11799002 [TBL] [Abstract][Full Text] [Related]
16. [The study of bipolar radiofrequency chondroplasty to cartilage injure of goats]. Zhang J; Wang Y; Hou XK; Shi DW Zhonghua Wai Ke Za Zhi; 2008 Mar; 46(6):446-9. PubMed ID: 18785582 [TBL] [Abstract][Full Text] [Related]
17. A review of current concepts in radiofrequency chondroplasty. Horton D; Anderson S; Hope NG ANZ J Surg; 2014 Jun; 84(6):412-6. PubMed ID: 23551491 [TBL] [Abstract][Full Text] [Related]
18. Use of a Novel Variable Power Radiofrequency Ablation System Specific for Knee Chondroplasty: Surgical Experience and Two-Year Patient Results. Piper D; Taylor C; Howells N; Murray J; Porteous A; Robinson JR Cureus; 2021 Jan; 13(1):e12864. PubMed ID: 33520559 [TBL] [Abstract][Full Text] [Related]
19. Risk of osteonecrosis of the femoral condyle after arthroscopic chondroplasty using radiofrequency: a prospective clinical series. Cetik O; Cift H; Comert B; Cirpar M Knee Surg Sports Traumatol Arthrosc; 2009 Jan; 17(1):24-9. PubMed ID: 18758748 [TBL] [Abstract][Full Text] [Related]
20. Radiofrequency energy in the arthroscopic treatment of knee chondral lesions: a systematic review. Rocco P; Lorenzo DB; Guglielmo T; Michele P; Nicola M; Vincenzo D Br Med Bull; 2016 Mar; 117(1):149-56. PubMed ID: 26862117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]