These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37449040)

  • 1. easyPACId, a Simple Method for Induced Production, Isolation, Identification, and Testing of Natural Products from Proteobacteria.
    Bode E; Assmann D; Happel P; Meyer E; Münch K; Rössel N; Bode HB
    Bio Protoc; 2023 Jul; 13(13):e4709. PubMed ID: 37449040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoter Activation in Δhfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing.
    Bode E; Heinrich AK; Hirschmann M; Abebew D; Shi YN; Vo TD; Wesche F; Shi YM; Grün P; Simonyi S; Keller N; Engel Y; Wenski S; Bennet R; Beyer S; Bischoff I; Buaya A; Brandt S; Cakmak I; Çimen H; Eckstein S; Frank D; Fürst R; Gand M; Geisslinger G; Hazir S; Henke M; Heermann R; Lecaudey V; Schäfer W; Schiffmann S; Schüffler A; Schwenk R; Skaljac M; Thines E; Thines M; Ulshöfer T; Vilcinskas A; Wichelhaus TA; Bode HB
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18957-18963. PubMed ID: 31693786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach.
    Gulsen SH; Tileklioglu E; Bode E; Cimen H; Ertabaklar H; Ulug D; Ertug S; Wenski SL; Touray M; Hazir C; Bilecenoglu DK; Yildiz I; Bode HB; Hazir S
    Sci Rep; 2022 Jun; 12(1):10779. PubMed ID: 35750682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A.
    Cook TB; Jacobson TB; Venkataraman MV; Hofstetter H; Amador-Noguez D; Thomas MG; Pfleger BF
    Metab Eng; 2021 Sep; 67():112-124. PubMed ID: 34175462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabclavine diversity in
    Wenski SL; Cimen H; Berghaus N; Fuchs SW; Hazir S; Bode HB
    Beilstein J Org Chem; 2020; 16():956-965. PubMed ID: 32461774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling.
    Rill A; Zhao L; Bode HB
    Microb Cell Fact; 2024 Apr; 23(1):98. PubMed ID: 38561780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nematode-Associated Bacteria: Production of Antimicrobial Agent as a Presumptive Nominee for Curing Endodontic Infections Caused by
    Donmez Ozkan H; Cimen H; Ulug D; Wenski S; Yigit Ozer S; Telli M; Aydin N; Bode HB; Hazir S
    Front Microbiol; 2019; 10():2672. PubMed ID: 31824457
    [No Abstract]   [Full Text] [Related]  

  • 9. Uncovering Nematicidal Natural Products from
    Abebew D; Sayedain FS; Bode E; Bode HB
    J Agric Food Chem; 2022 Jan; 70(2):498-506. PubMed ID: 34981939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome analysis of secondary metabolite‑biosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria.
    Muangpat P; Meesil W; Ngoenkam J; Teethaisong Y; Thummeepak R; Sitthisak S; Tandhavanant S; Chantratita N; Bode HB; Vitta A; Thanwisai A
    PLoS One; 2022; 17(9):e0274956. PubMed ID: 36129957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria.
    Shi YM; Hirschmann M; Shi YN; Ahmed S; Abebew D; Tobias NJ; Grün P; Crames JJ; Pöschel L; Kuttenlochner W; Richter C; Herrmann J; Müller R; Thanwisai A; Pidot SJ; Stinear TP; Groll M; Kim Y; Bode HB
    Nat Chem; 2022 Jun; 14(6):701-712. PubMed ID: 35469007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria.
    Sukhanova E; Zimens E; Kaluzhnaya O; Parfenova V; Belykh O
    Pol J Microbiol; 2018; 67(4):501-516. PubMed ID: 30550237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria.
    Wang G; Zhao Z; Ke J; Engel Y; Shi YM; Robinson D; Bingol K; Zhang Z; Bowen B; Louie K; Wang B; Evans R; Miyamoto Y; Cheng K; Kosina S; De Raad M; Silva L; Luhrs A; Lubbe A; Hoyt DW; Francavilla C; Otani H; Deutsch S; Washton NM; Rubin EM; Mouncey NJ; Visel A; Northen T; Cheng JF; Bode HB; Yoshikuni Y
    Nat Microbiol; 2019 Dec; 4(12):2498-2510. PubMed ID: 31611640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple "on-demand" production of bioactive natural products.
    Bode E; Brachmann AO; Kegler C; Simsek R; Dauth C; Zhou Q; Kaiser M; Klemmt P; Bode HB
    Chembiochem; 2015 May; 16(7):1115-9. PubMed ID: 25826784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-ribosomal peptide biosynthetic potential of the nematode symbiont Photorhabdus.
    Du AQ; Ying TT; Zhou ZY; Yu WC; Hu GA; Luo X; Ma MJ; Yu YL; Wang H; Wei B
    Environ Microbiol Rep; 2022 Dec; 14(6):917-925. PubMed ID: 35998886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters.
    Sulheim S; Fossheim FA; Wentzel A; Almaas E
    BMC Bioinformatics; 2021 Feb; 22(1):81. PubMed ID: 33622234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus.
    Tobias NJ; Wolff H; Djahanschiri B; Grundmann F; Kronenwerth M; Shi YM; Simonyi S; Grün P; Shapiro-Ilan D; Pidot SJ; Stinear TP; Ebersberger I; Bode HB
    Nat Microbiol; 2017 Dec; 2(12):1676-1685. PubMed ID: 28993611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colibrimycins, Novel Halogenated Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase (PKS-NRPS) Compounds Produced by
    Prado-Alonso L; Pérez-Victoria I; Malmierca MG; Montero I; Rioja-Blanco E; Martín J; Reyes F; Méndez C; Salas JA; Olano C
    Appl Environ Microbiol; 2022 Jan; 88(1):e0183921. PubMed ID: 34669429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering.
    Nielsen ML; Isbrandt T; Petersen LM; Mortensen UH; Andersen MR; Hoof JB; Larsen TO
    PLoS One; 2016; 11(8):e0161199. PubMed ID: 27551732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts.
    Cimen H; Touray M; Gulsen SH; Hazir S
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.