These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37449175)

  • 1. Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion.
    Wegayehu EB; Muluneh FB
    Heliyon; 2023 Jul; 9(7):e17982. PubMed ID: 37449175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate Streamflow Simulation Using Hybrid Deep Learning Models.
    Wegayehu EB; Muluneh FB
    Comput Intell Neurosci; 2021; 2021():5172658. PubMed ID: 34745247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow.
    Reis GB; da Silva DD; Fernandes Filho EI; Moreira MC; Veloso GV; Fraga MS; Pinheiro SAR
    J Environ Manage; 2021 Jul; 290():112625. PubMed ID: 33895452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellite observations and modeling to understand the Lower Mekong River basin streamflow variability.
    Mohammed IN; Bolten JD; Srinivasan R; Lakshmi V
    J Hydrol (Amst); 2018 Sep; 564():559-573. PubMed ID: 30100623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated remote sensing and machine learning tools for estimating ecological flow regimes in tropical river reaches.
    Sahoo DP; Sahoo B; Tiwari MK; Behera GK
    J Environ Manage; 2022 Nov; 322():116121. PubMed ID: 36070653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP.
    Huang F; Zhang X
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23896-23908. PubMed ID: 38430443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impacts of dam/weir operation on streamflow predictions using LSTM across South Korea.
    Kwon Y; Cha Y; Park Y; Lee S
    Sci Rep; 2023 Jun; 13(1):9296. PubMed ID: 37291216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion-based framework for meteorological drought modeling using remotely sensed datasets under climate change scenarios: Resilience, vulnerability, and frequency analysis.
    Fooladi M; Golmohammadi MH; Safavi HR; Singh VP
    J Environ Manage; 2021 Nov; 297():113283. PubMed ID: 34280857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia.
    Tareke KA; Awoke AG
    Heliyon; 2023 Feb; 9(2):e13287. PubMed ID: 36816247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal.
    Bhatta B; Shrestha S; Shrestha PK; Talchabhadel R
    Sci Total Environ; 2020 Oct; 740():140156. PubMed ID: 32563002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models for streamflow regionalization in a tropical watershed.
    Ferreira RG; Silva DDD; Elesbon AAA; Fernandes-Filho EI; Veloso GV; Fraga MS; Ferreira LB
    J Environ Manage; 2021 Feb; 280():111713. PubMed ID: 33257181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective.
    Khan M; Khan AU; Khan S; Khan FA
    Water Sci Technol; 2023 Nov; 88(9):2309-2331. PubMed ID: 37966185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia.
    Roth V; Lemann T; Zeleke G; Subhatu AT; Nigussie TK; Hurni H
    Heliyon; 2018 Sep; 4(9):e00771. PubMed ID: 30225375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations.
    Wang W; Lu H; Yang D; Sothea K; Jiao Y; Gao B; Peng X; Pang Z
    PLoS One; 2016; 11(3):e0152229. PubMed ID: 27010692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercomparison of deep learning models in predicting streamflow patterns: insight from CMIP6.
    Anwar H; Khan AU; Ullah B; Taha ATB; Najeh T; Badshah MU; Ghanim AAJ; Irfan M
    Sci Rep; 2024 Jul; 14(1):17468. PubMed ID: 39080322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of satellite rainfall products for modeling water yield over the source region of Blue Nile Basin.
    Belete M; Deng J; Wang K; Zhou M; Zhu E; Shifaw E; Bayissa Y
    Sci Total Environ; 2020 Mar; 708():134834. PubMed ID: 31784158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble streamflow projections for a small watershed with HSPF model.
    Albek M; Albek EA; Göncü S; Şimşek Uygun B
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):36023-36036. PubMed ID: 31713135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How suitable are satellite rainfall estimates in simulating high flows and actual evapotranspiration in MelkaKunitre catchment, Upper Awash Basin, Ethiopia?
    Mekonnen K; Melesse AM; Woldesenbet TA
    Sci Total Environ; 2022 Feb; 806(Pt 1):150443. PubMed ID: 34844310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.