These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37449211)

  • 1. Advances in genetic manipulation of
    Wan W; Li D; Li D; Jiao J
    Front Immunol; 2023; 14():1209879. PubMed ID: 37449211
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Mueller KE; Wolf K; Fields KA
    mBio; 2016 Jan; 7(1):e01817-15. PubMed ID: 26787828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Manipulation of Chlamydia trachomatis: Chromosomal Deletions.
    Wolf K; Rahnama M; Fields KA
    Methods Mol Biol; 2019; 2042():151-164. PubMed ID: 31385275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis.
    Mueller KE; Wolf K; Fields KA
    Curr Protoc Microbiol; 2017 May; 45():11A.3.1-11A.3.15. PubMed ID: 28510361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis of Chlamydia trachomatis Using TargeTron.
    Weber MM; Faris R
    Methods Mol Biol; 2019; 2042():165-184. PubMed ID: 31385276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Coming of Age Story: Chlamydia in the Post-Genetic Era.
    Hooppaw AJ; Fisher DJ
    Infect Immun; 2015 Dec; 84(3):612-21. PubMed ID: 26667838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markerless Gene Deletion by Floxed Cassette Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Keb G; Fields KA
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum.
    Fields KA; Bodero MD; Scanlon KR; Jewett TJ; Wolf K
    Infect Immun; 2022 Dec; 90(12):e0045322. PubMed ID: 36350146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during
    Ghosh S; Ruelke EA; Ferrell JC; Bodero MD; Fields KA; Jewett TJ
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32152196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 13. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 14. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and Reverse Genetic Analysis of Chlamydia.
    Kędzior M; Bastidas RJ
    Methods Mol Biol; 2019; 2042():185-204. PubMed ID: 31385277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron.
    Johnson CM; Fisher DJ
    PLoS One; 2013; 8(12):e83989. PubMed ID: 24391860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular pathogenesis of
    Jury B; Fleming C; Huston WM; Luu LDW
    Front Cell Infect Microbiol; 2023; 13():1281823. PubMed ID: 37920447
    [No Abstract]   [Full Text] [Related]  

  • 19. The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development.
    Wood NA; Blocker AM; Seleem MA; Conda-Sheridan M; Fisher DJ; Ouellette SP
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873765
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular Genetic Analysis of Chlamydia Species.
    Sixt BS; Valdivia RH
    Annu Rev Microbiol; 2016 Sep; 70():179-98. PubMed ID: 27607551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.