BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37449425)

  • 21. The relationship between intestinal histology and function as shown by compensatory enlargement of remnant villi after midgut resection in chickens.
    Yamauchi KE; Incharoen T; Yamauchi K
    Anat Rec (Hoboken); 2010 Dec; 293(12):2071-9. PubMed ID: 21046671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enriched Intestinal Stem Cell Seeding Improves the Architecture of Tissue-Engineered Intestine.
    Liu Y; Rager T; Johnson J; Enmark J; Besner GE
    Tissue Eng Part C Methods; 2015 Aug; 21(8):816-24. PubMed ID: 25603285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications.
    Dodou D; Breedveld P; Wieringa PA
    Eur J Pharm Biopharm; 2005 May; 60(1):1-16. PubMed ID: 15848050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of epithelial cells, villi and crypts from small intestine of pigeons (Columba livia).
    Mac Donal O; Chediack JG; Caviedes-Vidal E
    Biocell; 2008 Dec; 32(3):219-27. PubMed ID: 19181184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics.
    Zhu M; Ji S; Luo Y; Zhang F; Liu Z; Wang C; Lv Z; Jiang Y; Wang M; Cui Z; Li G; Jiang L; Liu Z; Chen X
    Adv Mater; 2022 Feb; 34(7):e2101339. PubMed ID: 34978104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies.
    Gommers LMM; Skrzypek K; Bolhuis-Versteeg L; Pinckaers NET; Vrijhof R; van der Wijst J; de Baaij JHF; Stamatialis D; Hoenderop JGJ
    Acta Biomater; 2019 Nov; 99():110-120. PubMed ID: 31465881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium.
    Rudolph SE; Longo BN; Tse MW; Houchin MR; Shokoufandeh MM; Chen Y; Kaplan DL
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4942-4955. PubMed ID: 36191009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestine-inspired wrinkled MXene microneedle dressings for smart wound management.
    Lu H; Shao W; Gao B; Zheng S; He B
    Acta Biomater; 2023 Mar; 159():201-210. PubMed ID: 36724862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired Interfacial Strengthening Flexible Supercapacitors via Hierarchically Topological Interlocking Strategy.
    Huang C; Kang L; Zhang N; Wan S; Zhou X; Zhang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38303-38312. PubMed ID: 31536321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
    Shin W; Kim HJ
    Nat Protoc; 2022 Mar; 17(3):910-939. PubMed ID: 35110737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi.
    Furuya S; Furuya K; Shigemoto R; Sokabe M
    Cell Tissue Res; 2010 Nov; 342(2):243-59. PubMed ID: 20967467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique.
    Yang Y; Zhou Y; Lin X; Yang Q; Yang G
    Pharmaceutics; 2020 Feb; 12(3):. PubMed ID: 32121141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication.
    Furuya S; Furuya K
    Int Rev Cytol; 2007; 264():165-223. PubMed ID: 17964923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery.
    Xu X; Goyanes A; Trenfield SJ; Diaz-Gomez L; Alvarez-Lorenzo C; Gaisford S; Basit AW
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111773. PubMed ID: 33545904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink.
    Kim W; Kim GH
    Theranostics; 2020; 10(6):2495-2508. PubMed ID: 32194815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morpho-elasticity of intestinal villi.
    Balbi V; Ciarletta P
    J R Soc Interface; 2013 May; 10(82):20130109. PubMed ID: 23486174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow and mixing by small intestine villi.
    Lim YF; de Loubens C; Love RJ; Lentle RG; Janssen PW
    Food Funct; 2015 Jun; 6(6):1787-95. PubMed ID: 25968481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic deleterious effect of hypoxemia and hypovolemia on microcirculation in intestinal villi*.
    Harrois A; Baudry N; Huet O; Kato H; Lohez M; Ziol M; Duranteau J; Vicaut E
    Crit Care Med; 2013 Nov; 41(11):e376-84. PubMed ID: 23963129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography.
    Creff J; Courson R; Mangeat T; Foncy J; Souleille S; Thibault C; Besson A; Malaquin L
    Biomaterials; 2019 Nov; 221():119404. PubMed ID: 31419651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intestinal patches for oral drug delivery.
    Shen Z; Mitragotri S
    Pharm Res; 2002 Apr; 19(4):391-5. PubMed ID: 12033369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.