BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37449448)

  • 1. Stimuli-Responsive Delivery of Antimicrobial Peptides Using Polyelectrolyte Complexes.
    Antropenko A; Caruso F; Fernandez-Trillo P
    Macromol Biosci; 2023 Nov; 23(11):e2300123. PubMed ID: 37449448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation between antimicrobial peptides and polyelectrolytes.
    Borro BC; Malmsten M
    Adv Colloid Interface Sci; 2019 Aug; 270():251-260. PubMed ID: 31301601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. k-Carrageenan based magnetic@polyelectrolyte complex composite hydrogel for pH and temperature-responsive curcumin delivery.
    Santhamoorthy M; Thirupathi K; Kumar SSD; Pandiaraj S; Rahaman M; Phan TTV; Kim SC
    Int J Biol Macromol; 2023 Jul; 244():125467. PubMed ID: 37336380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced delivery systems for peptide antibiotics.
    Cesaro A; Lin S; Pardi N; de la Fuente-Nunez C
    Adv Drug Deliv Rev; 2023 May; 196():114733. PubMed ID: 36804008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles.
    Canaparo R; Foglietta F; Giuntini F; Della Pepa C; Dosio F; Serpe L
    Molecules; 2019 May; 24(10):. PubMed ID: 31137622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Responsive Lipid-Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens.
    Maji R; Omolo CA; Agrawal N; Maduray K; Hassan D; Mokhtar C; Mackhraj I; Govender T
    Mol Pharm; 2019 Nov; 16(11):4594-4609. PubMed ID: 31593478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides.
    Casciaro B; Ghirga F; Quaglio D; Mangoni ML
    Curr Protein Pept Sci; 2020; 21(4):429-438. PubMed ID: 31797755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the design of antimicrobial peptide conjugates.
    Silva ARP; Guimarães MS; Rabelo J; Belén LH; Perecin CJ; Farías JG; Santos JHPM; Rangel-Yagui CO
    J Mater Chem B; 2022 May; 10(19):3587-3600. PubMed ID: 35262120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces.
    Yu L; Li K; Zhang J; Jin H; Saleem A; Song Q; Jia Q; Li P
    ACS Appl Bio Mater; 2022 Feb; 5(2):366-393. PubMed ID: 35072444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.
    Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP
    Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugation of antimicrobial peptides to enhance therapeutic efficacy.
    Selvaraj SP; Chen JY
    Eur J Med Chem; 2023 Nov; 259():115680. PubMed ID: 37515922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures.
    Parchebafi A; Tamanaee F; Ehteram H; Ahmad E; Nikzad H; Haddad Kashani H
    Microb Cell Fact; 2022 Jun; 21(1):118. PubMed ID: 35717207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides for combating drug-resistant bacterial infections.
    Xuan J; Feng W; Wang J; Wang R; Zhang B; Bo L; Chen ZS; Yang H; Sun L
    Drug Resist Updat; 2023 May; 68():100954. PubMed ID: 36905712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance.
    Pranantyo D; Zhang K; Si Z; Hou Z; Chan-Park MB
    Biomacromolecules; 2022 May; 23(5):1873-1891. PubMed ID: 35471022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle-Associated Drug-Delivery Systems.
    Moorcroft SCT; Jayne DG; Evans SD; Ong ZY
    Macromol Biosci; 2018 Dec; 18(12):e1800207. PubMed ID: 30318831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review.
    Yao L; Liu Q; Lei Z; Sun T
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126819. PubMed ID: 37709236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptide-based materials: opportunities and challenges.
    Rai A; Ferrão R; Palma P; Patricio T; Parreira P; Anes E; Tonda-Turo C; Martins MCL; Alves N; Ferreira L
    J Mater Chem B; 2022 Apr; 10(14):2384-2429. PubMed ID: 35244122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.