These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37449797)

  • 1. Bottom-up, Chip-Scale Engineering of Low Threshold, Multi-Quantum-Well Microring Lasers.
    Wong WW; Wang N; Esser BD; Church SA; Li L; Lockrey M; Aharonovich I; Parkinson P; Etheridge J; Jagadish C; Tan HH
    ACS Nano; 2023 Aug; 17(15):15065-15076. PubMed ID: 37449797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxially Grown InP Micro-Ring Lasers.
    Wong WW; Su Z; Wang N; Jagadish C; Tan HH
    Nano Lett; 2021 Jul; 21(13):5681-5688. PubMed ID: 34143635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically pumped 1.5  μm InP-based quantum dot microring lasers directly grown on (001) Si.
    Zhu S; Shi B; Lau KM
    Opt Lett; 2019 Sep; 44(18):4566-4569. PubMed ID: 31517932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable parity-time symmetry vortex laser from a phase change material-based microcavity.
    Su Y; Fan H; Zhang S; Cao T
    Microsyst Nanoeng; 2023; 9():142. PubMed ID: 37954039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-mode lasing by tailoring the excitation of localized surface plasmon resonances to whispering gallery modes in a microring laser.
    Moradiani F; Arvanagh PE; Parsanasab GM; Kavosi A
    Opt Express; 2023 May; 31(10):16615-16622. PubMed ID: 37157737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Tunable Polymer Whispering-Gallery-Mode Laser.
    Liu F; Tong J; Xu Z; Ge K; Ruan J; Cui L; Zhai T
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers.
    Zhang Q; Ha ST; Liu X; Sum TC; Xiong Q
    Nano Lett; 2014 Oct; 14(10):5995-6001. PubMed ID: 25118830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic printed photonics: From microring lasers to integrated circuits.
    Zhang C; Zou CL; Zhao Y; Dong CH; Wei C; Wang H; Liu Y; Guo GC; Yao J; Zhao YS
    Sci Adv; 2015 Sep; 1(8):e1500257. PubMed ID: 26601256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.
    Kim H; Lee WJ; Farrell AC; Balgarkashi A; Huffaker DL
    Nano Lett; 2017 Sep; 17(9):5244-5250. PubMed ID: 28759243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance lasers for fully integrated silicon nitride photonics.
    Xiang C; Guo J; Jin W; Wu L; Peters J; Xie W; Chang L; Shen B; Wang H; Yang QF; Kinghorn D; Paniccia M; Vahala KJ; Morton PA; Bowers JE
    Nat Commun; 2021 Nov; 12(1):6650. PubMed ID: 34789737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curved InGaAs nanowire array lasers grown directly on silicon-on-insulator.
    Ratiu BP; Temu B; Messina C; Abouzaid O; Rihani S; Berry G; Oh SS; Li Q
    Opt Express; 2023 Oct; 31(22):36668-36676. PubMed ID: 38017812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon.
    Wirths S; Mayer BF; Schmid H; Sousa M; Gooth J; Riel H; Moselund KE
    ACS Nano; 2018 Mar; 12(3):2169-2175. PubMed ID: 29365252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power, electrically-driven continuous-wave 1.55-μm Si-based multi-quantum well lasers with a wide operating temperature range grown on wafer-scale InP-on-Si (100) heterogeneous substrate.
    Sun J; Lin J; Zhou M; Zhang J; Liu H; You T; Ou X
    Light Sci Appl; 2024 Mar; 13(1):71. PubMed ID: 38462605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors.
    Wu C; Wei W; Yuan X; Zhang Y; Yan X; Zhang X
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.
    Wang R; Sprengel S; Boehm G; Muneeb M; Baets R; Amann MC; Roelkens G
    Opt Express; 2016 Sep; 24(18):21081-9. PubMed ID: 27607711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red-emitting InP quantum dot micro-disk lasers epitaxially grown on (001) silicon.
    Luo W; Lin L; Huang J; Han Y; Lau KM
    Opt Lett; 2021 Sep; 46(18):4514-4517. PubMed ID: 34525035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template.
    Hu Y; Liang D; Mukherjee K; Li Y; Zhang C; Kurczveil G; Huang X; Beausoleil RG
    Light Sci Appl; 2019; 8():93. PubMed ID: 31645936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.
    Haffouz S; Zeuner KD; Dalacu D; Poole PJ; Lapointe J; Poitras D; Mnaymneh K; Wu X; Couillard M; Korkusinski M; Schöll E; Jöns KD; Zwiller V; Williams RL
    Nano Lett; 2018 May; 18(5):3047-3052. PubMed ID: 29616557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates.
    Tournié E; Monge Bartolome L; Rio Calvo M; Loghmari Z; Díaz-Thomas DA; Teissier R; Baranov AN; Cerutti L; Rodriguez JB
    Light Sci Appl; 2022 Jun; 11(1):165. PubMed ID: 35650192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon.
    Tian B; Wang Z; Pantouvaki M; Absil P; Van Campenhout J; Merckling C; Van Thourhout D
    Nano Lett; 2017 Jan; 17(1):559-564. PubMed ID: 27997215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.