BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37449901)

  • 1. Cytocipher determines significantly different populations of cells in single-cell RNA-seq data.
    Balderson B; Piper M; Thor S; Bodén M
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37449901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CASCC: a co-expression-assisted single-cell RNA-seq data clustering method.
    Cai L; Anastassiou D
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling up single-cell RNA-seq data analysis with CellBridge workflow.
    Nouri N; Kurlovs AH; Gaglia G; de Rinaldis E; Savova V
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38113416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical and automated cell-type annotation and inference of cancer cell of origin with Census.
    Ghaddar B; De S
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38011649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes.
    Iida K; Kondo J; Wibisana JN; Inoue M; Okada M
    Bioinformatics; 2022 Sep; 38(18):4330-4336. PubMed ID: 35924984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
    Diaz-Mejia JJ; Meng EC; Pico AR; MacParland SA; Ketela T; Pugh TJ; Bader GD; Morris JH
    F1000Res; 2019; 8():. PubMed ID: 31508207
    [No Abstract]   [Full Text] [Related]  

  • 13. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data.
    Yu L; Cao Y; Yang JYH; Yang P
    Genome Biol; 2022 Feb; 23(1):49. PubMed ID: 35135612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal transport improves cell-cell similarity inference in single-cell omics data.
    Huizing GJ; Peyré G; Cantini L
    Bioinformatics; 2022 Apr; 38(8):2169-2177. PubMed ID: 35157031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACTINN: automated identification of cell types in single cell RNA sequencing.
    Ma F; Pellegrini M
    Bioinformatics; 2020 Jan; 36(2):533-538. PubMed ID: 31359028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.