These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37449901)

  • 21. Isoform-level quantification for single-cell RNA sequencing.
    Pan L; Dinh HQ; Pawitan Y; Vu TN
    Bioinformatics; 2022 Feb; 38(5):1287-1294. PubMed ID: 34864849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scCross: efficient search for rare subpopulations across multiple single-cell samples.
    Gerniers A; Nijssen S; Dupont P
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene-expression memory-based prediction of cell lineages from scRNA-seq datasets.
    Eisele AS; Tarbier M; Dormann AA; Pelechano V; Suter DM
    Nat Commun; 2024 Mar; 15(1):2744. PubMed ID: 38553478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. powsimR: power analysis for bulk and single cell RNA-seq experiments.
    Vieth B; Ziegenhain C; Parekh S; Enard W; Hellmann I
    Bioinformatics; 2017 Nov; 33(21):3486-3488. PubMed ID: 29036287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data.
    Gustafsson J; Anton M; Roshanzamir F; Jörnsten R; Kerkhoven EJ; Robinson JL; Nielsen J
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217868120. PubMed ID: 36719923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm.
    Baruzzo G; Cesaro G; Di Camillo B
    Bioinformatics; 2022 Mar; 38(7):1920-1929. PubMed ID: 35043939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-based branching point detection in single-cell data by K-branches clustering.
    Chlis NK; Wolf FA; Theis FJ
    Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning.
    Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S
    Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data.
    Xu J; Zhang A; Liu F; Chen L; Zhang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scSTEM: clustering pseudotime ordered single-cell data.
    Song Q; Wang J; Bar-Joseph Z
    Genome Biol; 2022 Jul; 23(1):150. PubMed ID: 35799304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2022 Feb; 38(5):1328-1335. PubMed ID: 34888622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle.
    Tekath T; Dugas M
    Bioinformatics; 2021 Nov; 37(21):3781-3787. PubMed ID: 34469510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders.
    Heydari AA; Davalos OA; Zhao L; Hoyer KK; Sindi SS
    Bioinformatics; 2022 Apr; 38(8):2194-2201. PubMed ID: 35179571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.